LINEBURG


<< Пред. стр.

страница 7
(всего 11)

ОГЛАВЛЕНИЕ

След. стр. >>

Таким образом, теория ансамблей Гиббса открыва­ет возможность строгого сочетания статистического под­хода (исследования «популяции», описываемой плот­ностью r) и законов динамики. Она допускает также более точное представление состояния термодинамиче­ского равновесия. Например, в случае изолированной системы ансамбль представляющих точек соответству­ет системам с одной и той же энергией Е. Плотность r отлична от нуля только на микроканонической поверх­ности в фазовом пространстве, отвечающей заданному значению энергии. Первоначально плотность r может быть распределена по микроканонической поверхности произвольно. В состоянии равновесия плотность r пе­рестает изменяться во времени и не должна зависеть от выбора начального состояния. Следовательно, при-
316


Рис. 28. Временнaя эволюция в фазовом пространстве «объема», содержащего представляющие точки системы: величина объема остается неизменной, а форма искажается. Положение в фазовом пространстве задается координатой q и импульсом р.
ближение к равновесному состоянию имеет простой смысл в терминах эволюции плотности r: функция рас­пределения r становится постоянной на всей микроканонической поверхности. Каждая точка такой поверх­ности с равной вероятностью может представлять си­стему. Это соответствует микроканоническому ансамб­лю.
Приближает ли теория ансамблей хоть сколько-ни­будь к решению проблемы необратимости? Теория Больцмана описывает термодинамическую энтропию с помощью функции распределения скоростей f. Для это­го Больцману пришлось ввести свою H-функцию. Как мы уже знаем, система эволюционирует во времени до тех пор, пока распределение скоростей не становится максвелловским, и на протяжении всей эволюции H функция монотонно убывает. Можно ли теперь в бо­лее общем плане принять за основу возрастания энтро­пии эволюцию распределения r в фазовом пространст­ве к микроканоническому ансамблю? Достаточно ли для этого вместо больцмановской функции H, выра­женной через f, взять гиббсовскую функцию HG, зави­сящую точно таким же образом от r? К сожалению, ответы на оба вопроса отрицательны. Если мы рассмот­рим уравнение Лиувилля, описывающее эволюцию плот­ности r в фазовом пространстве, и учтем сохранение объема «фазовой жидкости», о котором уже упомина-
317


лось, то вывод последует незамедлительно: функция HG постоянна и поэтому не может быть аналогом энт­ропии. По отношению к теории Больцмана последнее обстоятельство кажется не столько продвижением впе­ред, сколько шагом назад!
Несмотря на этот негативный аспект, вывод Гиббса остается весьма важным. Мы уже неоднократно отме­чали расплывчатость и. неоднозначность понятий поряд­ка и хаоса. Постоянство функции HG свидетельствует о том, что в рамках динамической теории не существу­ет никакого изменения порядка! «Информация», выра­жаемая функцией HG, остается постоянной. Сохранение информации можно понимать следующим образом: столкновения порождают корреляции. В результате столкновений скорости рандомизируются, становятся случайными, что позволяет нам описывать весь про­цесс как переход от порядка к хаосу. Вместе с тем по­явление корреляции в результате столкновений свиде­тельствует об обратном процессе: о переходе от хаоса к порядку! Теория Гиббса показывает, что оба процес­са — прямой и обратный — в точности компенсируют друг друга.
Итак, мы приходим к важному выводу: независимо от выбора представления (будь то движение по траек­ториям или теория ансамблей Гиббса—Эйнштейна) нам не удастся построить теорию необратимых процес­сов, которая выполнялась бы для любой системы, удов­летворяющей законам классической (или квантовой) механики. У нас нет даже способа говорить о переходе от порядка к хаосу! Как следует понимать эти отрица­тельные результаты? Любая ли теория необратимых процессов находится в неразрешимом конфликте с ме­ханикой (классической или квантовой)? Нередко высказывалось предложение включить космологические чле­ны, которые учитывали бы влияние расширяющейся Вселенной на уравнения движения и порождали бы стрелу времени. С подобной идеей трудно согласиться. С одной стороны, не вполне ясно, как вводить эти кос­мологические члены. С другой стороны, точные динами­ческие эксперименты, по-видимому, отвергают сущест­вование космологических членов, по крайней мере если говорить о земных масштабах, которые мы и рассмат­риваем в данном случае (достаточно вспомнить о пре­цизионных космических экспериментах, поставленных


с помощью искусственных спутников Земли и под­твердивших с высокой точностью уравнения Ньютона). Вместе с тем, как уже неоднократно подчеркивалось, мы живем в плюралистическом мире, в котором обра­тимые и необратимые процессы сосуществуют в одной и той же расширяющейся Вселенной.
Еще более радикальный вывод состоит в том, чтобы встать на точку зрения Эйнштейна и считать время как необратимость иллюзией, которая никогда не найдет се­бе места в объективном мире физики. К счастью, су­ществует другой выход, который мы подробно рас­смотрим в гл. 9. Необратимость, как мы неоднократно отмечали, не является универсальным свойством, а это означает, что не следует ожидать общего вывода необратимости из динамики.
Теория ансамблей Гиббса вводит лишь один допол­нительный, но очень важный элемент по сравнению с динамикой траекторий: наше незнание точных началь­ных условий. Маловероятно, чтобы одно лишь это не­знание приводило к необратимости.
Таким образом, не следует удивляться, что нас постигла неудача. Ведь мы так и не сформулировали те специфические особенности, которыми должна обладать динамическая система для того, чтобы приводить к не­обратимым процессам.
Почему так много ученых с готовностью приняли субъективную интерпретацию необратимости? Возмож­но, привлекательность субъективной интерпретации от­части объясняется тем, что, как мы знаем, необратимое возрастание энтропии сначала связывалось с несовер­шенством манипуляций, производимых над системой, и неполнотой нашего контроля над идеально обратимыми операциями.
Но субъективная интерпретация становится явно абсурдной, если мы оставляем в стороне малосущест­венные ассоциации с технологическими проблемами. Не следует забывать также о том историческом кон­тексте, в котором второе начало термодинамики об­рело интерпретацию стрелы времени. Если принять субъективную интерпретацию, то химическое сродство, теплопроводность, вязкость, т. е. все свойства, связан­ные с необратимым производством энтропии, окажутся зависимыми от наблюдателя. Кроме того, та роль, ко­торую играют в биологии явления организации, связан-
319


ные с необратимостью, не позволяет считать их просты­ми иллюзиями, обусловленными нашим незнанием. Раз­ве мы сами, живые существа, способные наблюдать и производить манипуляции, — не более чем фикции, вы­званные несовершенством наших органов чувств? Разве различие между жизнью и смертью — иллюзия?
Таким образом, последние достижения термодинами­ческой теории увеличили остроту конфликта между ди­намикой и термодинамикой. Попытки свести результа­ты термодинамики к аппроксимациям, обусловленным несовершенством нашего знания, оказались несостоя­тельными, когда была понята конструктивная роль энт­ропии и открыта возможность усиления флуктуаций. Наоборот, динамику трудно отвергнуть во имя необра­тимости: в движении идеального маятника нет никакой необратимости. Существование двух конфликтующих миров — мира траекторий и мира процессов — не вызы­вает сомнений. Мы не можем отрицать существование одного из них, утверждая существование другого.
В какой-то степени имеется определенная аналогия между этим конфликтом и тем, с которым связано за­рождение диалектического материализма. В гл. 5 и 6 мы описали природу, которую можно было бы назвать «исторической», т. е. способной к развитию и иннова­ции. Идея истории природы как неотъемлемой состав­ной части материализма принадлежит К. Марксу и бы­ла более подробно развита Ф. Энгельсом. Таким обра­зом, последние события в физике, в частности открытие конструктивной роли необратимости, поставили в есте­ственных науках вопрос, который давно задавали материалисты. Для них понимание природы означало пони­мание ее как способной порождать человека и челове­ческое общество.
Кроме того, в то время, когда Энгельс писал «Диа­лектику природы», физические науки отвергали меха­нистическое мировоззрение и склонялись ближе к идее исторического развития природы. Энгельс упоминает три фундаментальных открытия: энергии и законов, уп-равляющих ее качественными преобразованиями; клет­ки как основы всех органических существ и открытие Дарвином эволюции видов. Исходя из этих трех вели­ких открытий, Энгельс пришел к выводу, что механи­стическое мировоззрение мертво. Вместе с тем механи­цизм ставил перед диалектическим материализмом ряд
320


принципиальных и далеко не простых вопросов. Како­вы соотношения между общими законами диалектики и столь же универсальными законами механического движения? Становятся ли последние неприменимыми после того, как достигнута определенная стадия раз­вития, или же они просто неверны или неполны? Нель­зя еще раз не задать и наш предыдущий вопрос: как вообще могут быть связаны между собой мир процес­сов и мир траекторий19?
Но сколь ни легко критиковать субъективную ин­терпретацию необратимости и отмечать еe слабые сто­роны, выйти за ее рамки и сформулировать «объектив­ную» теорию необратимых процессов необычайно труд­но. В истории попыток создания этого предмета звучат и трагические ноты. Многие склонны считать, что имен­но отчетливое понимание принципиальных трудностей, стоящих на пути к созданию объективной теории необ­ратимых процессов и казавшихся непреодолимыми, привело Больцмана в 1906 г. к самоубийству.
5. Больцман и стрела времени
Как мы уже упоминали, Больцман сначала полагал, будто ему удалось доказать, что стрела времени опре­деляется эволюцией динамических систем от менее ве­роятных состояний к более вероятным или от состояний с меньшим числом комплексов к состояниям с боль­шим числом комплексов (число комплексов монотонно возрастает со временем). Обсуждали мы и возражения Пуанкаре и Цермело. Пуанкаре доказал, что всякая замкнутая динамическая система со временем возвра­щается в сколь угодно малую окрестность своего ис­ходного состояния. Иначе говоря, все состояния дина­мической системы так или иначе повторимы. Могла ли в таком случае стрела времени быть связана с возра­станием энтропии? После мучительных размышлений Больцман изменил свою позицию. Он оставил попытки доказать существование объективной стрелы времени и выдвинул новую идею, которая в известном смысле сво­дила закон возрастания энтропии к тавтологии. Больц­ман считал теперь, что стрела времени — не более чем соглашение, водимое нами (или, быть может, всеми живыми существами) в мир, в котором не существует объективного различия между прошлым и будущим.
321


Вот что писал, например, Больцман в ответ на крити­ку Цермело:
«Имеется выбор между двумя представлениями. Можно предположить, что вся Вселенная сейчас нахо­дится в некотором весьма невероятном состоянии. Но можно мыслить зоны — промежутки времени, по исте­чении которых снова наступают невероятные собы­тия, — такими же крошечными по сравнению с продол­жительностью существования Вселенной, как расстоя­ние от Земли до Сириуса ничтожно по сравнению с ее размерами.
Тогда во всей Вселенной (которая в противном слу­чае повсюду находилась бы в тепловом равновесии, т. е. была бы мертвой) имеются относительно неболь­шие участки порядка масштаба нашей звездной систе­мы (мы будем называть их отдельными мирами), ко­торые в течение относительно небольших по сравнению с эоном промежутков времени значительно отклоняют­ся от теплового равновесия, а именно: среди этих миров одинаково часто встречаются состояния, вероятности которых возрастают и уменьшаются. Таким образом, для Вселенной в целом два направления времени явля­ются неразличимыми, так как в пространстве нет верха и низа. Но точно так же, как мы в некотором опреде­ленном месте земной поверхности называем «низом» направление к центру Земли, так и живое существо, которое находится в определенной временной фазе од­ного из таких отдельных миров, назовет направление времени, ведущее к более невероятным состояниям, по-другому, чем противоположное (первое — как направ­ленное к «прошлому», к началу последнее — к «буду­щему», к концу), и вследствие этого названия будет об­наруживать «начало» для этих малых областей, выде­ленных из Вселенной, всегда в некотором невероятном состоянии.
Этот метод представляется мне единственным, с по­мощью которого можно осмыслить второе начало, теп­ловую смерть каждого отдельного мира без того, чтобы предполагать одностороннее изменение всей Вселенной от некоторого определенного начального состояния по направлению к некоторому итоговому конечному со­стоянию»20.
Идея Больцмана наглядно изображена на диаграм­ме, предложенной Карлом Поппером (рис. 29). Стре-
322


Рис. 29. Схематическое изображение больцмановской космологической интерпретации стрелы времени по Попперу (см. текст).
ла времени столь же произвольна, как и вертикальное направление, определяемое гравитационным полем.
Комментируя Больцмана, Поппер заметил следую­щее:
«Идея Больцмана поражает своей смелостью и красотой. Вместе с тем она заведомо неприемлема, по крайней мере для реалиста. Она объявляет одностороннее изменение иллюзией. В таком случае трагическую гибель Хиросимы также следует считать иллюзией. Но тогда и весь наш мир становится иллюзией вместе со всеми нашими попытками узнать о нем нечто новое. Тем самым идея Больцмана (как и любой идеализм) обрекает себя на поражение. Идеалистическая гипоте­за Больцмана имеет характер ad hoc гипотезы и про­тиворечит его собственной реалистической и не без страстности отстаиваемой антиидеалистической фило­софии и неутолимой жажде знания»21.
Мы полностью согласны с комментариями Поппера и считаем, что настало время опять вернуться к задаче, которую некогда ставил перед собой Больцман. Двад­цатый век стал свидетелем великой концептуальной революции в физике, что не могло не породит новые на­дежды на объединение динамики и термодинамики. Ныне мы вступаем в новую эру в истории времени, эру, в которой бытие и становление могут быть объединены в непротиворечивую картину.
323


Глава 9. НЕОБРАТИМОСТЬ — ЭНТРОПИЙНЫЙ БАРЬЕР
1. Энтропия и стрела времени
В предыдущей главе мы описали некоторые трудности микроскопической теории необратимых процессов. Ее связь с динамикой, классической или квантовой, не может быть простой в том смысле, что необратимость и сопутствующее ей возрастание энтропии не может быть общим следствием динамики. Микроскопическая теория необратимых процессов требует наложения дополни­тельных, более специфических условий. Мы вынуждены принять плюралистический мир, в котором обратимые и необратимые процессы сосуществуют. Но такой плю­ралистический мир принять нелегко.
В своем «Философском словаре» Вольтер утверж­дал по поводу предопределения следующее: «...все управляется незыблемыми законами ... все заранее предустановлено ... все необходимо обусловле­но... Есть люди, которые, испуганные этой истиной, до­пускают лишь половину ее, подобно должникам, вруча­ющим кредиторам половину своего долга с просьбой от­срочить выплату остального. Одни события, говорят та­кие люди, необходимы, другие — нет. Было бы странно, если бы часть того, что происходит, была бы должна происходить, а другая часть не должна была бы проис­ходить... Я непременно должен ощущать неодолимую потребность написать эти строки, вы — столь же не­одолимую потребность осудить меня за них. Мы оба одинаково глупы, оба — не более чем игрушки в руках предопределения. Ваша природа состоит в том, чтобы творить дурное, моя — в том, чтобы любить истину и опубликовать ее вопреки вам»1.
324


Сколь ни убедительно звучат такого рода априорные аргументы, они тем не менее могут вводить в за­блуждение. Рассуждение Вольтера выдержано в ньютоновском духе: природа всегда подобна самой себе. В этой связи небезынтересно отметить, что ныне мы находимся в том самом странном мире, о котором с та­кой иронией писал Вольтер. К своему изумлению, мы открыли качественное многообразие природы.
Неудивительно поэтому, что люди в нерешительности колебались между двумя крайностями: исключени­ем необратимости из физики (сторонником этого направления был, как мы уже отмечали, Эйнштейн2) и признанием необратимости как важной особенности природных явлений (выражителем этого направления стал Уайтхед со своей концепцией процесса). В настоя­щее время ни у кого не вызывает сомнений (см. гл. 5 и 6), что необратимость существует на макроскопичес­ком уровне и играет важную конструктивную роль. Следовательно, в микроскопическом мире должно быть нечто проявляющееся на макроскопическом уровне, по­добное необратимости.
Микроскопическая теория должна учитывать два тесно связанных между собой элемента. Прежде всего в своих попытках построить микроскопическую модель энтропии (H-функции Больцмана), монотонно изменя­ющейся со временем, мы должны следовать Больцману. Именно такое изменение должно задавать стрелу времени. Возрастание энтропии изолированной системы должно выражать старение системы.
Стрелу времени нам часто не удается связать с энт­ропией рассматриваемого процесса. Поппер приводит простой пример системы, в которой развивается одно­сторонне направляемый процесс и, следовательно, воз­никает стрела времени.
«Предположим, что мы отсняли на кинопленку об­ширную водную поверхность. Первоначально она по­коилась, а затем в воду бросили камень. Просматривая отснятый при этом фильм от конца к началу, мы уви­дим сходящиеся круговые волны нарастающей ампли­туды. Сразу же после того, как гребень волны достиг­нет наибольшей высоты, круглая область невозмущенной воды сомкнется в центре. Такую картину нельзя рассматривать как возможный классический процесс Для создания ее потребовалось огромное число коге-
325


рентных генераторов волн, расположенных далеко от центра, действие которых для того, чтобы быть объяс­нимым, должно выглядеть (как в фильме) так, словно всеми генераторами мы управляем из центра. Но если мы захотим просмотреть от конца к началу исправлен­ный вариант фильма, то столкнемся с теми же трудно­стями»3.
Действительно, какими бы техническими средствами мы ни располагали, всегда будет существовать опре­деленное расстояние от центра, за пределами которого мы не сможем генерировать сходящуюся волну. Одно­направленные процессы существуют. Нетрудно пред­ставить себе и многие другие процессы того же типа, что и процесс, рассмотренный Поппером —мы никогда не увидим, как энергия собирается со всех сторон к звезде, — или обратные ядерные реакции, протекающие с поглощением энергии.
Кроме того, существуют и другие стрелы времени, например космологическая стрела (о которой превос­ходно написал в своей книге «Этот правый, левый мир» Мартин Гарднер4). Предполагая, что Вселенная нача­лась с большого взрыва, мы тем самым подразумеваем существование временного порядка на космологическое уровне. Размеры Вселенной продолжают возрастать, но мы не можем отождествить радиус Вселенной с энтро­пией: внутри Вселенной, как мы уже упоминали, проис­ходят и обратимые, и необратимые процессы. Аналогич­ным образом в физике элементарных частиц существу­ют процессы, приводящие к нарушению T-симметрии. Последнее означает, что уравнения, описывающие эво­люцию системы при +t, отличны от уравнений, описы­вающих эволюцию системы при —t. Однако нарушение Т-симметрии не мешает нам включать ее в обычную (гамильтонову) формулировку динамики. Определить энтропию с помощью нарушения Т-симметрии невоз­можно.
В этой связи нельзя не вспомнить знаменитую дис­куссию между Эйнштейном и Ритцем, опубликованную в 1909 г.5. Совместная публикация Эйнштейна и Ритца крайне необычна. Она весьма коротка — занимает ме­нее печатной страницы. По существу, в ней лишь кон­статируется расхождение во взглядах. Эйнштейн счи­тал, что необратимость является следствием введенных Больцманом вероятностных понятий. Ритц же отводил
326


решающую роль различию между запаздывающими и опережающими волнами. Это различие напоминает нам аргументацию Поппера. Волны, которые мы наблюда­ем в пруду, — запаздывающие. Они появляются после того, как мы бросили камень.
И Эйнштейн и Ритц существенно обогатили дискус­сию о необратимости, но каждый из них акцентировал внимание лишь на каком-то одном аспекте проблемы. В гл. 8 мы упоминали о том, что вероятность уже предполагает направленность времени и, следователь­но, не может служить основанием при выводе стрелы времени. Мы упоминали и о том, что исключение та­ких процессов, как опережающие волны, не обязатель­но приводит к формулировке второго начала. Необхо­димы аргументы как одного, так и другого типа.
2. Необратимость как процесс нарушения симметрии
Прежде чем обсуждать проблему необратимости, полезно напомнить, как можно вывести другой тип нару­шения симметрии, а именно нарушение пространствен­ной симметрии. В уравнениях реакции с диффузией ту же роль играют «левое» и «правое» (уравнения диф­фузии инвариантны относительно инверсии пространст­ва r®—r). Тем не менее, как мы знаем, бифуркации могут приводить к решениям, симметрия которых нару­шена. Например, концентрация какого-нибудь из ве­ществ, участвующих в реакции, справа может оказать­ся больше, чем слева. Симметрия уравнений реакций с диффузией требует лишь, чтобы решения с нарушен­ной симметрией появлялись парами, а не поодиночке.
Разумеется, существует немало уравнений реакции с диффузией без бифуркаций и, следовательно, без на­рушений пространственной симметрии. Нарушение пространственной симметрии происходит лишь при весьма специфических условиях. Это обстоятельство крайне важно для понимания нарушений временной симмет­рии, которая представляет для нас особый интерес. Нам необходимо найти системы, в которых уравнения движения допускают существование режимов с низкой симметрией.
Как известно, уравнения движения инвариантны от­носительно обращения времени t®—t. Однако реше-
327


ния этих уравнений могут соответствовать эволюции, в которой симметрия относительно обращения времени утрачивается. Единственное условие, налагаемое сим­метрией уравнений, состоит в том, что решения с нару­шенной временной симметрией должны встречаться па­рами. Например, если мы находим решение, стремя­щееся к равновесному состоянию в далеком будущем (а не в далеком прошлом), то непременно должно су­ществовать решение, которое стремится к равновесно­му состоянию в далеком прошлом (а не в далеком бу­дущем). Решения с нарушенной симметрией возникают только парами.
Столкнувшись с подобной ситуацией, мы можем сформулировать внутренний смысл второго начала. Оно обретает статус принципа отбора, утверждающего, что в природе реализуется и наблюдается лишь один из двух типов решений. В тех случаях, когда оно при­менимо, второе начало термодинамики выражает внут­реннюю поляризацию природы. Оно не может быть следствием самой динамики. Второе начало является дополнительным принципом отбора, который, будучи реализованным, распространяется динамикой. Еще не­сколько лет назад выдвинуть подобную программу бы­ло бы решительно невозможно. Но за последние деся­тилетия динамика достигла замечательных успехов, и мы теперь располагаем всем необходимым для того, чтобы понять в деталях, как решения с нарушенной симметрией возникают в «достаточно сложных» дина­мических системах, и что, собственно, означает на мик­роскопическом уровне правило отбора, выражаемое вторым началом термодинамики. Именно это мы и хо­тим показать в следующем разделе.
3. Пределы классических понятий
Начнем с классической механики. Как мы уже упо­минали, если основным первичным элементом считать траекторию, то мир был бы таким же обратимым, как и те траектории, из которых он состоит. В «тра-екторном» описании нет места ни энтропии, ни стреле времени. Но в результате непредвиденного развития событий применимость понятия траек­тории оказалась более ограниченной, чем мож-
328


но было бы ожидать. Вернемся к теории ансамб­лей Гиббса и Эйнштейна, о которой мы говорили в гл. 8. Как известно, Гиббс и Эйнштейн ввели в физику фазовое пространство для того, чтобы учесть наше «не­знание» начального состояния системы большого числа частиц. Для Гиббса и Эйнштейна функция распределе­ния в фазовом пространстве была лишь вспомогатель­ным средством, выражающим незнание de facto ситуации, которая однозначно определена de jure. Но вся проблема предстает в новом свете, если можно по­казать, что для некоторых типов систем бесконечно точное определение начальных условий приводит к внутренне противоречивой процедуре. Но коль скоро это так, тот факт, что нам всегда известна не отдельная траектория, а группа (или ансамбль) траекторий, выражает уже не только ограниченность нашего зна­ния — он становится исходным пунктом нового подхода к исследованию динамики.
В простейших случаях никакой проблемы не возни­кает. Рассмотрим в качестве примера маятник. В зави­симости от начальных условий маятник может либо ко­лебаться, либо вращаться вокруг точки подвеса. Для того чтобы маятник вращался, его кинетическая энер­гия должна быть достаточно велика, иначе он «упа­дет назад», так и не достигнув вертикального положе­ния. Двум типам движения — колебаниям и вращени­ям — соответствуют две различные области фазового пространства. Причина, по которой эти области не пе­ресекаются, весьма проста: для вращения необходим больший запас кинетической энергии, чем для колеба­ния (см. рис. 30).
Если измерения позволяют установить, что система первоначально находится в заданной области, мы мо­жем с полной уверенностью предсказать, будет ли ма­ятник совершать колебания или вращаться вокруг точ­ки подвеса. Повысив точность измерений, мы можем локализовать начальное состояние маятника в более узкой области, целиком лежащей внутри предыдущей. И в том, и в другом случае поведение системы извест­но при любых t: ничего нового или неожиданного слу­читься не может.
Одно из наиболее удивительных открытий XX в. со­стоит в том, что такого рода описание не соответству­ет поведению динамических систем в общем случае, по-
329


Рис. 30. Представление движения маятника в пространстве координат V и q, где V — скорость, q — угловое отклонение, а) Ти­пичные траектории в пространстве (V, q); b) заштрихованные области соответствуют колебаниям, а области вне их — вращению маятника.
скольку «большинство» траекторий динамических си­стем неустойчиво6. Обозначим траектории одного типа (например, соответствующие «колебательным режи­мам») знаком +, а траектории другого типа (соответ­ствующие «вращательным режимам») знаком U. Вме­сто картины, изображенной на рис. 30, где области ко­лебательных и вращательных режимов разделены, мы получим в общем случае причудливую смесь состояний, что делает переход к отдельной точке весьма неодно­значным (см. рис. 31). Даже если известно, что началь­ное состояние нашей системы принадлежит области А, мы не можем заключить, что проходящая через него
330


Рис. 31. Схематическое изображение любой произвольно малой области фазового пространства V динамически неустойчивой системы. Как и в случае маятника, существуют траектории двух типов (обозначенные + и U), но, в отличие от маятника, траектории обоих типов встречаются в сколь угодно малой области.
траектория принадлежит типу +: траектория вполне может оказаться типа U. Увеличение точности измере­ний и связанный с ним переход от области А к более узкой области В также ничего не дает, так как неопре­деленность в типе траектории сохраняется. Во всех сколь угодно малых областях всегда существуют со­стояния, принадлежащие каждому из двух типов траек­торий7.
Для таких систем траектории становятся ненаблю­даемыми. Неустойчивость свидетельствует о достиже­нии пределов ньютоновской идеализации. Нарушается независимость двух основных элементов ньютоновской динамики: закона движения и начальных условий. За­кон движения вступает в конфликт с детерминирован­ностью начальных условий. В этой связи невольно вспоминается мысль Анаксагора о неисчерпаемости творческих возможностей частиц (семян), составляю­щих природу. По Анаксагору, любой предмет содержит в каждой своей части бесконечное множество качест­венно различных семян. В нашем случае любая об-
331


ласть фазового пространства содержит огромное мно­жество качественно различных режимов поведения.
С этой точки зрения детерминистическая траектория применима лишь в ограниченных пределах. А посколь­ку не только на практике, но и в теории мы не можем описывать систему на языке траекторий и вынуждены, использовать функцию распределения, соответствую­щую конечной (сколь угодно малой) области фазового пространства, нам остается лишь предсказывать стати­стическое будущее системы,
Наш друг Леон Розенфельд имел обыкновение го­ворить, что понятия могут быть поняты лишь через их пределы. В этом смысле можно утверждать, что мы достигли ныне лучшего понимания классической меха-пики, создание которой проложило путь к современно­му естествознанию.
Как возникла новая точка зрения? Для того чтобы ответить на этот вопрос, нам придется описать те глу­бокие изменения, которые претерпела динамика в XX в. Хотя по традиции динамику принято считать архети­пом полной, замкнутой отрасли знания, в действитель­ности она подверглась коренным преобразованиям.

4. Возрождение динамики
В первой части нашей книги мы рассказали о дина­мике XIX в. Именно такую динамику излагают многие учебники. Прототипом динамической системы в XIX в. было принято считать интегрируемую систему. Решить уравнения движения означало «удачно» выбрать коор­динаты — так, чтобы соответствующие импульсы были инвариантами движения. Такой подход исключал взаи­модействие между частями системы. Ставка на ин­тегрируемые системы провалилась. Как уже упомина­лось, в конце XIX в. Брунс и Пуанкаре доказали, что большинство динамических систем, начиная со знаме­нитой проблемы трех тел, неинтегрируемы.
С другой стороны, сама идея приближения к равно­весию, сформулированная на языке теории ансамблей, требовала выхода за пределы идеализации интегрируе­мых систем. В гл. 8 мы видели, что в теории ансамб­лей изолированная система находится в равновесии, когда она представлена «микроканоническим ансамб­лем» — все точки на поверхности заданной энергии
332


Рис. 32. Временнaя эволюция ячейки в фазовом пространстве р, q. «Объем» ячейки и ее форма сохраняются во времени. Большая часть фазового пространства недоступна для системы.
равновероятны. Это означает, что для системы, стремя­щейся к равновесию, энергия должна быть единствен­ной величиной, сохраняющейся в ходе эволюции сис­темы. Энергия должна быть единственным инвариан­том. При любых начальных условиях система, эволю­ционируя, должна «побывать» во всех точках поверх­ности заданной энергии. Для интегрируемых систем энергия — далеко не единственный инвариант. Число инвариантов совпадает с числом степеней свободы, по­скольку у интегрируемой системы каждый обобщенный импульс остается постоянным. Следовательно, интег­рируемая система «заключена» на весьма ограничен­ном участке поверхности постоянной энергии (рис. 32) — пересечении всех инвариантных поверхностей.
Чтобы избежать этих трудностей, Максвелл и Больцман ввели новый, совершенно иной тип динами­ческой системы. Для таких систем энергия является единственным инвариантом, а сами системы получили название эргодических систем (рис. 33).
Выдающийся вклад в развитие теории эргодических систем внесли Дж. Биркгоф, фон Нейман, Хопф, Кол­могоров и Синай (разумеется, наш перечень далеко не полон)8,9,10. Ныне мы знаем, что существуют обшир­ные классы динамических (но не гамильтоновых) си-
333


Рис. 33. Типичная эволюция в фазовом пространстве ячейки, соответствующей эргодической системе. «Объем» и форма ячейки со­храняются во времени, но на этот раз ячейка перемещается по всему фазовому пространству.
стем, которые эргодичны. Известно также, что даже сравнительно простые системы могут обладать более сильными свойствами, чем эргодичность. Для таких си­стем движение в фазовом пространстве становится сильно хаотическим (хотя в полном соответствии с уравнением Луивилля — см. гл. 7 — объем в фазовом пространстве сохраняется).
Предположим, что наше знание начальных условий позволяет нам локализовать систему в малой ячейке фазового пространства. Наблюдая за эволюцией ячей­ки, мы увидим, как она начнет деформироваться и из­гибаться, испуская, подобно амебе, «псевдоножки» по всем направлениям и распространяясь в виде волокон, которые постепенно становятся все тоньше, пока нако­нец не заполнят все пространство. Ни один самый ис­кусный рисунок не может по достоинству передать
334


Рис. 34. Типичная эволюция в фазовом пространстве ячейки, соответствующей системе с перемешиванием. Объем по-прежнему со­храняется, но форма уже не остается неизменной: ячейка постепенно размазывается по всему фазовому пространству.
всей сложности реальной ситуации. Действительно, в ходе эволюции системы с перемешиванием две точки, сколь угодно близкие в начальный момент времени, могут разойтись в разные стороны. Даже если бы мы располагали столь обширной информацией о системе, что начальная ячейка, образованная представляющими ее точками, была бы очень мала, динамическая эволю­ция превратила бы эту миниатюрную область в настоя­щее геометрическое «чудовище», пронизывающее фа­зовое пространство своими нитями-щупальцами.
Продемонстрируем различие между устойчивыми и неустойчивыми системами на нескольких простых при­мерах. Рассмотрим двухмерное фазовое пространство. Через одинаковые промежутки времени станем произ­водить преобразования координат, при которых старая абсцисса р переходит в новую абсциссу р—q, а старая ордината q — в новую ординату р. На рис. 35 показа­но, что произойдет, если применить эти преобразования
335


Рис. 35. Преобразование объема в фазовом пространстве, по­рождаемое дискретным преобразованием: абсцисса р переходит в р—q, ордината q переходит в р. Преобразование циклическое: после шестикратного повторения преобразования исходная ячейка перехо­дит в себя.
к квадрату: квадрат деформируется, но после шести­кратного действия преобразования мы возвращаемся к исходному квадрату. Система устойчива: соседние точ­ки преобразуются в соседние. Кроме того, рассмотрен­ное нами преобразование циклическое (после шести операций восстанавливается исходный квадрат).
Рассмотрим теперь два примера сильно неустойчи­вых систем. Первый пример чисто математический, вто­рой имеет непосредственное отношение к физике. Пер­вая система — преобразование, названное математика­ми по понятным соображениям преобразованием пекаря9,10 Берется квадрат и сплющивается в прямоуголь­ник. Половина прямоугольника отрезается, накладыва­ется на другую половину, а получившийся квадрат снова «раскатывается» в прямоугольник. Последова-
336


Рис. 36. Реализация «преобразования пекаря» В и обратного преобразования В-1. Траектории черной и белой точек позволяют понять, как происходит каждое преобразование.
тельность операций, представленная на рис. 36, может быть повторена сколько угодно раз.
Каждый раз квадрат разбивается на части, которые перекладываются в другом порядке. Квадрат в этом примере соответствует фазовому пространству. «Пре­образование пекаря» переводит каждую точку квадра­та в однозначно определенную новую точку. Хотя по­следовательность точек-образов вполне детерминистична, «преобразование пекаря» обнаруживает также ста­тистические свойства. Пусть начальное условие для си­стемы состоит в том, что область А квадрата первона­чально равномерно заполнена представляющими точ­ками. Можно показать, что, после того как преобразо­вание будет повторено достаточное число раз, началь­ная ячейка А, каковы бы ни были ее размеры и распо­ложение в квадрате, распадется на отдельные несвяз­ные части (рис. 37). Следовательно, любая область квадрата, независимо от ее размеров, всегда содер­жит различные траектории, которые при каждом «дроб­лении» области расходятся. Таким образом, несмотря
337


Рис. 37. Временнaя эволюция неустойчивой системы. Область А со временем делится на две области A' и А", каждая из которых в свою очередь делится на две подобласти.
на то что эволюция каждой точки в отдельности обра­тима и детерминистична, описание эволюции любой, даже сколь угодно малой области носит, по существу, статистический характер.
Другим примером простой системы с неожиданно сложным поведением может служить рассеяние твер­дых шаров. Рассмотрим маленький шарик, отражаю­щийся от больших случайно распределенных шаров. Предположим, что большие шары неподвижны. Такую модель физики называют моделью, или газом, Лоренца в честь выдающегося голландского физика Гендрика Антона Лоренца.
Траектория малого подвижного шарика вполне оп­ределена. Но стоит лишь нам ввести в начальные ус­ловия небольшую неопределенность, как в результате последовательных столкновений эта неопределенность усилится. Со временем вероятность найти малый ша­рик равномерно распределится по всему объему, заня­тому газом Лоренца. Каково бы ни было число преоб-
338


Рис. 38. Схематическое изображение неустойчивости траекто­рии маленького шарика, отражающегося от больших шаров. Малей­шая неточность в задании положения маленького шарика делает невозможным предсказание большого шара, с которым столкнется маленький шарик после первого отражения.

разований, газ никогда не вернется в исходное состоя­ние.
В двух последних примерах динамические системы были сильно неустойчивы. Ситуация, с которой мы сталкиваемся здесь, напоминает неустойчивости в тер­модинамических системах (см. гл. 5). Произвольно ма­лые различия в начальных условиях усиливаются. В результате переход от ансамблей в фазовом прост­ранстве к индивидуальным траекториям становится невозможным. Описание на языке теории ансамблей мы вынуждены принять за исходный пункт. Статистические понятия перестают быть лишь приближениями к неко­торой «объективной истине». Перед такими неустойчи­выми системами демон Лапласа оказался бы столь же бессильным, как и мы.
339


Высказывание Эйнштейна «бог не играет в кости» хорошо известно. Ему созвучно высказывание Пуанка­ре о бесконечно мощном духе, беспредельно осведомленном в законах природы, для которого вероятности просто не могли бы существовать. Однако Пуанкаре сам же указал путь к решению проблемы11. Он заме­тил, что когда мы бросаем игральные кости и прибе­гаем к теории вероятностей, то это отнюдь не означает, будто динамика неверна. Применение вероятностных соображений означает нечто другое. Мы используем понятие вероятности потому, что в любом диапазоне начальных условий, сколь бы малым он ни был, суще­ствует «много» траекторий, приводящих к выпадению каждой из граней кости. Именно это и происходит с неустойчивыми динамическими системами. Господь бог, если бы пожелал, мог бы вычислить траектории в не­стабильном динамическом мире. При этом он получил бы тот же результат, который нам позволяет получить теория вероятностей. Разумеется, всеведущему богу с его абсолютным знанием было бы нетрудно избавиться от всякой случайности.
Итак, мы можем констатировать, что тесная взаи­мосвязь между неустойчивостью и вероятностью, не­сомненно, существует. Это весьма важное обстоятельст­во, и к его обсуждению мы сейчас перейдем.
5. От случайности к необратимости
Рассмотрим последовательность квадратов, на которые действует «преобразование пекаря». Эта последо­вательность изображена на рис. 39. Представим себе, что заштрихованные области заполнены чернилами, а незаштрихованные — водой. При t=0 мы имеем так называемое производящее разбиение квадрата. При­няв его за исходное, мы построим серию разбиений либо на горизонтальные полосы, если отправимся в бу­дущее, либо на вертикальные полосы, если начнем дви­гаться в прошлое. В обоих случаях мы получим базис­ные разбиения. Произвольное распределение чернил по квадрату формально представимо в виде суперпози­ции базисных разбиений. Каждому базисному распре­делению можно поставить в соответствие внутреннее время, равное просто числу «преобразований пекаря», которые необходимо проделать, чтобы перейти от про-
340


Рис. 39. Начав с «производящего разбиения» (см. текст) в мо­мент времени 0 и многократно повторив «преобразование пекаря», мы получили горизонтальные полосы. Двигаясь в прошлое, мы по­лучили бы вертикальные полосы.
изводящего распределения к данному12. Следовательно, системы такого типа допускают своего рода внутрен­ний возраст*.
Внутреннее время Т сильно отличается от обычного механического времени, поскольку зависит от глобальной топологии системы. Можно даже говорить об «овременивании» пространства, тем самым вплотную при­ближаясь к идеям, недавно выдвинутым географами, которые ввели понятие хроногеографии13. Взглянув на «структуру города или ландшафта, мы видим времен­ные элементы как взаимосвязанные и сосуществующие. Бразилиа или Помпеи** вполне соответствовали бы оп­ределенному внутреннему возрасту, в какой-то мере аналогичному одному из базисных разбиений в «пре­образовании пекаря». Наоборот, современный Рим с его зданиями, построенными в самые различные перио­ды, соответствовал бы среднему времени точно так же, как произвольное разбиение разложимо на элементы,
отвечающие различным внутренним временам.
Посмотрим еще раз на рис. 39. Что произойдет, ес­ли мы продвинемся далеко в будущее? Зазоры между горизонтальными чернильными полосами будут стано­виться все уже и уже. Какова бы ни была точность
* Нетрудно видеть, что это внутреннее время, которое мы обозначим через Т, в действительности представляет собой опера­тор, аналогичный операторам, введенным в квантовой механике (см. гл 7). Действительно, произвольное разбиение квадрата обладает не однозначно определенным, а лишь «средним» временем, соответствующим суперпозиции базисных разбиений, из которых оно состоит.
** Бразилиа — город построенный в короткий срок по проекту Нимейера. Помпеи — город, переставший существовать в результате извержения Везувия. В первом случае город не имеет прошлого, во втором — будущего. — Прим. перев.
341


наших измерений, спустя некоторое время она будет превзойдена, и мы заключим, что чернила равномерно распределены по всему объему. Неудивительно поэто­му, что такого рода приближение к «равновесию» мож­но описать с помощью стохастических процессов типа цепей Маркова, о которых мы упоминали в гл. 8. Не­давно это утверждение было доказано со всей матема­тической строгостью14, но сам по себе результат пред­ставляется вполне естественным. Со временем чернила равномерно распределяются по объему так же, как ша­ры в модели Эренфестов равномерно распределялись по урнам (см. гл. 8). Но если мы заглянем в прошлое, снова начав с производящего разбиения при t=0, то увидим то же самое явление. Чернила будут распреде­ляться вертикальными полосами, и снова, углубив­шись в прошлое достаточно далеко, мы обнаружим равномерное распределение чернил по объему. Это по­зволяет нам сделать вывод о том, что и этот процесс допускает описание с помощью цепи Маркова, но на­правленной в прошлое. Таким образом, из неустойчи­вых динамических процессов мы получаем две цепи Маркова: одну, стремящуюся к равновесию в будущем, другую — в прошлом. Мы считаем, что этот результат весьма интересен, и хотели бы его прокомментировать. Внутреннее время дает нам новое, «нелокальное» описание.
Хотя «возраст» системы (т. е. соответствующее раз­биение) нам известен, мы тем не менее не можем сопо­ставить ему однозначно определенную локальную тра­екторию. Мы знаем лишь, что система находится где-то в заштрихованной части квадрата (см. рис. 39). Анало­гичным образом, если известны точные начальные ус­ловия, соответствующие какой-то точке системы, то мы не знаем ни разбиения, которому она принадлежит, ни возраста системы. Следовательно, для таких систем существуют два взаимодополнительных описания. Си­туация здесь несколько напоминает ту, с которой мы уже встречались в гл. 7 при рассмотрении квантовой механики.
Существование новой альтернативы — нелокального описания — открывает перед нами путь к переходу от динамики к вероятностям. Системы, для которых такой переход возможен, мы называем внутренне случайными системами.
342


В классических детерминистических системах мы можем говорить о вероятностях перехода из одной точ­ки в другую лишь в весьма вырожденном смысле: вероятность перехода равна единице, если две точки ле­жат на одной динамической траектории, и нулю, если они не лежат на одной траектории.
В настоящей вероятностной теории нам понадобятся вероятности, принимающие, к отличие от вероятностей типа «нуль—единица», любые значения от пуля до единицы. Как такое возможно? Здесь перед нами во весь рост встает конфликт между субъективистскими взглядами на вероятность и ее объективными интер­претациями. Субъективная интерпретация соответствует случаю, когда отдельные траектории неизвестны. Вероятность (и в конечном счете связанная с ней необ­ратимость) при таком подходе имеет своим истоком наше незнание. К счастью, существует другая, объек­тивная интерпретация: вероятность возникает в резуль­тате альтернативного описания динамики, нелокального описания, возможного лишь для сильно неустойчи­вых динамических систем.
При таком подходе вероятность становится объек­тивным свойством, порождаемым, так сказать, внутри динамики и отражающим фундаментальную структуру динамической системы. Мы уже подчеркивали важ­ность основного открытия Больцмана — установления связи между энтропией и вероятностью. Для внутрен­не случайных систем понятие вероятности обретает ди­намический смысл. Теперь нам необходимо совершить переход от внутренне случайных систем к необрати­мым системам. Как мы уже знаем, неустойчивые дина­мические процессы порождают по две цепи Маркова.
Взглянем на эту двойственность с другой точки зрения. Рассмотрим распределение, сосредоточенное не на всей поверхности квадрата, а на отрезке прямой. Отрезок может быть вертикальным или горизонталь­ным. Выясним, что произойдет с этим отрезком под действием «преобразований пекаря», обращенных в бу­дущее. Результат их показан на рис. 40: вертикальный отрезок рассекается на части и в далеком будущем стягивается в точку. Наоборот, горизонтальный отрезок при каждом «преобразовании пекаря» удваивается, и в далеком будущем его образы («копии») равномерно покроют весь квадрат. Ясно, что при движении вспять
343


Рис. 40. Сжатие и растяжение слоев при «преобразовании пе­каря». Со временем сжимающийся слой А1 сокращается (последова­тельные этапы сокращения обозначены А1, В1, C1). Растягивающиеся слои удваиваются (последовательные этапы удвоения обозначены А2, В2, С2).
во времени (в прошлое) наблюдается обратная карти­на. По очевидным причинам вертикальный отрезок на­зывается сжимающимся, а горизонтальный — растягивающимся слоем.
Мы видим, что аналогия с теорией бифуркаций полная. Сжимающийся слой и растягивающийся слой соответствуют двум реализациям динамики, каждая из которых связана с нарушением симметрии и появлени­ем несимметричных режимов парами. Сжимающийся слой отвечает равновесному состоянию в далеком буду­щем, растягивающийся — в далеком прошлом. Мы по­лучаем, таким образом, две цепи Маркова с противо­положной ориентацией во времени.
Теперь нам необходимо совершить переход от внут­ренне случайных систем к системам внутренне необра­тимым. Для этого нам необходимо понять, чем, собст­венно, отличается сжимающийся слой от растягиваю­щегося. Нам известна еще одна система, столь же не­устойчивая, как и «преобразование пекаря», — систе­ма, описывающая рассеяние твердых шаров. Для этой системы растягивающиеся и сжимающиеся слои име­ют простой физический смысл. Сжимающийся слой со­ответствует множеству твердых шаров, скорости кото­рых случайным образом распределены в далеком прош-
344


лом и становятся параллельными в далеком будущем. Растягивающийся слой соответствует обратной ситуа­ции: скорости сначала параллельны, а затем их распре­деление становится случайным. Различие между сжи­мающимися и растягивающимися слоями очень напо­минает различие между расходящимися и сходящими­ся волнами в примере Поппера. Исключение сжимаю­щихся слоев соответствует экспериментально установленному факту: как бы ни изощрял свое хитроумие экс­периментатор, ему никогда не удастся добиться, чтобы скорости в системе оставались параллельными после произвольного числа столкновений. Исключая сжима­ющиеся слои, мы оставляем тем самым лишь одну из двух введенных нами цепей Маркова. Иначе говоря, второе начало становится принципом отбора началь­ных условий. Оно допускает лишь такие начальные условия, при которых система эволюционирует к равно­весному состоянию в будущем.
Правильность такого принципа отбора подтвержда­ется динамикой. Нетрудно видеть, что в примере с «преобразованием пекаря» сжимающийся слой навсег­да остается сжимающимся, а растягивающийся — рас­тягивающимся. Подавляя одну из двух цепей Маркова, мы переходим от внутренне случайной к внутренне не­обратимой системе. В описании необратимости мы выде­ляем три основных элемента:
неустойчивость
­
внутренняя случайность
­
внутренняя необратимость
Самым сильным из них является внутренняя необрати­мость: случайность и неустойчивость следуют из не­го14,15.
Каким образом подобный вывод можно совместить с динамикой? Как известно, в динамике «информация» сохраняется, в то время как цепи Маркова, забывая пре­дысторию, утрачивают информацию (вследствие чего энтропия возрастает; см. гл. 8). Никакого противоречия здесь нет: когда от динамического описания «преобра­зования пекаря» мы переходим к термодинамическому описанию, нам приходится изменять функцию распреде­ления. Связано это с тем, что «объекты», в терминах которых энтропия возрастает, отличаются от объектов,
345


рассматриваемых в динамике. Новая функция распре­деления r соответствует внутренне ориентированному во времени описанию динамической системы. Мы не можем останавливаться на математических аспектах перехода от старой функции распределения к новой. Скажем лишь, что преобразование, переводящее одну функцию распределения в другую, должно быть нека­ноническим (см. гл. 2). Следовательно, прийти к термо­динамическому описанию мы можем лишь ценой отказа от обычных понятий динамики.
Примечательно, что такое преобразование существу­ет, в результате чего оказывается возможным объеди­нить динамику и термодинамику, физику бытия и физи­ку становления. Позднее в этой главе и в заключитель­ном разделе книги мы еще вернемся к новым термоди­намическим объектам. Подчеркнем лишь, что в состоянии равновесия всякий раз, когда энтропия достигает своего максимума, эти объекты должны вести себя случайным образом.
Заслуживает внимания и то, что необратимость воз­никает, так сказать, из неустойчивости, наделяющей на­ше описание неустранимыми статистическими особенно­стями. Действительно, что означала бы стрела времени в детерминистическом мире, в котором и прошлое и бу­дущее содержатся в настоящем? Стрела времени ассо­циируется с переходом из настоящего в будущее имен­но потому, что будущее не содержится в настоящем и мы совершаем переход из настоящего в будущее. Построение необратимости на основе случайности чре­вато многими последствиями, выходящими за рамки собственно естествознания. Этих последствий мы кос­немся в заключительном разделе нашей книги, а теперь кратко поясним, в чем заключается различие между со­стояниями, разрешенными вторым началом, и состоя­ниями, которые второе начало запрещает.
6. Энтропийный барьер
Время течет в одном направлении: из прошлого в бу­дущее. Мы не можем манипулировать со временем, за­ставить его идти вспять, в прошлое. Путешествие во времени занимало воображения многих писателей: от безымянных создателей «Тысячи и одной ночи» до Гер­берта Уэллса с его «Машиной времени». В небольшом
346


произведении В. Набокова «Посмотри на арлекинов!»16 описываются муки рассказчика, которому не удается переключиться с одного направления времени на другое, чтобы «повернуть время вспять». В пятом томе своего капитального труда «Наука и цивилизация в Китае» Джозеф Нидэм описывает мечту китайским алхимиков: «свою высшую цель те видели не в превращении метал­лов в золото, а в манипулировании временем, достиже­нии бессмертия путем резкого замедления всех процес­сов распада в природе17. Теперь мы лучше понимаем, почему время невозможно «повернуть назад».
Бесконечно высокий энтропийный барьер отделяет разрешенные начальные состояния от запрещенных. Барьер этот никогда не будет преодолен техническим прогрессом: он бесконечно высок. Нам не остается ни­чего другого, как расстаться с мечтой о машине време­ни, которая перенесет нас в прошлое. Энтропийный барьер несколько напоминает другой барьер: существо­вание предельной скорости распространения сигналов скорости света. Технический прогресс может приблизить нас к скорости света, но, согласно современным физи­ческим представлениям, мы никогда не сможем превзой­ти ее.
Для того чтобы понять происхождение энтропийного барьера, нам потребуется вернуться к выражению для H-функции, возникающему в теории цепей Маркова (см. гл. 8). Сопоставим с каждым распределением чис­ла соответствующее значение H-функции. Можно ут­верждать, что каждое распределение обладает вполне определенным информационным содержанием. Чем вы­ше информационное содержание, тем труднее реализо­вать его носитель. Покажем, что начальное распреде­ление, запрещенное вторым началом, обладало бы бес­конечно большим информационным содержанием. Имен­но поэтому такие запрещенные распределения невоз­можно ни реализовать, ни встретить в природе.
Напомним сначала, какой смысл имеет введенная в гл. 8 H-функция. Разделим фазовое пространство на клетки, или ячейки. С каждой ячейкой k сопоставим ве­роятность Рравн(k) попасть в нее в равновесном состоя­нии и вероятность Р(k,t) оказаться в ней в неравновес­ном состоянии.
H -функция есть мера различия между P(k,t) иРравн(k) . В состоянии равновесия, когда различие
347


Рис. 41. Растягивающиеся (последовательность А) и сжимаю­щиеся (последовательность С) слои пересекают различное число кле­ток («ящиков»), на которые разделено фазовое пространство «преоб­разования пекаря». Все «квадраты», принадлежащие данной последо­вательности, относятся к одному моменту времени t=2, но число кле­ток, на которые разделен каждый квадрат, зависит от начала отсчета времени системы ti.
между вероятностями исчезает, H -функция обращается в нуль. Чтобы сравнить его с «преобразованием пекаря» и двумя порождаемыми им цепями Маркова, необходи­мо уточнить, как выбираются соответствующие ячейки. Предположим, что мы рассматриваем систему в момент времени 2 (см. рис. 39) и что в исходном состоянии система находилась в момент времени ti. Согласно на­шей динамической теории, клетки соответствуют всем возможным пересечениям разбиений от t=ti до t=2. На рис. 39 мы видим, что, когда ti отходит в прошлое,
348


ячейки становятся все более тонкими, поскольку нам приходится вводить все больше и больше вертикальных подразделений. Это отчетливо видно на рис. 41, где-в последовательности В мы получаем при движении сверху вниз ti-=1, 0, —1 и, наконец, ti=—2. Нетрудно видеть, что число ячеек возрастает при этом с 4 до 32.
Коль скоро мы располагаем ячейками, естественно сравнить неравновесное распределение с равновесным в каждой ячейке. В рассматриваемом нами примере неравновесное распределение есть либо растягивающийся слой (последовательность А), либо сжимающий­ся слой (последовательность С). Обратим внимание на то, что по мере сдвига ti в прошлое растягивающийся слой занимает все большее число ячеек: при ti=—1 он занимает 4 ячейки, при ti=—2 — уже 8 ячеек и т. д. В результате, воспользовавшись формулой из гл. 8, мы получаем конечный «ответ», даже если число ячеек неограниченно возрастает при ti®?.
Сжимающийся слой в отличие от растягивающегося при любых ti всегда локализован в 4 ячейках. Это при­водит к тому, что H-функция для сжимающегося слоя обращается в бесконечность, когда ti уходит в прош­лое. Таким образом, различие между динамической си­стемой и цепью Маркова состоит в том, что в случае динамической системы необходимо рассматривать бес­конечно много ячеек. Приготовить или наблюдать мож­но лишь такие меры или вероятности, которые в преде­ле при бесконечно большом числе ячеек дают конечную информацию или конечную H-функцию. Это исключает сжимающиеся слои18. По той же причине необходимо исключить и распределения, сосредоточенные в одной точке. Начальные условия, соответствующие одной точ­ке в неустойчивой системе, соответствовали бы беско­нечной информации. Следовательно, ни реализовать, ни наблюдать их невозможно. И в этом случае второе нача­ло выступает в роли принципа отбора.
В классической схеме начальные условия были про­извольными. Для неустойчивых систем произвол исклю­чается. Каждое начальное условие обладает в случае неустойчивых систем определенным информационным содержанием, которое зависит от динамики системы (подобно тому как в «преобразовании пекаря» для вы­числения информационного содержания мы прибегли к последовательному делению ячеек). Начальные усло-
349


вия и динамика перестают быть независимыми. Второе начало как принцип отбора представляется нам настоль­ко важным, что мы хотели бы привести еще один при­мер, на этот раз связанный с динамикой корреляций.
7. Динамика корреляций
В гл. 8 мы кратко обсудили эксперимент с обраще­нием скоростей. Возьмем разреженный газ и проследим за его эволюцией во времени. При t=t0 обратим скорости всех молекул газа. Газ вернется в начальное состоя­
Рис. 42. Рассеяние частиц. Первоначально скорости всех частиц равны. После соударения равенство скоростей нарушается и рас­сеянные частицы коррелированы с рассеятелем (корреляции здесь и далее изображены волнистыми линиями).
ние. Мы уже обращали внимание на то, что для воспро­изведения своего прошлого газу необходимо некое хра­нилище информации — своего рода «память». Такой па­мятью являются корреляции между частицами19.
Рассмотрим сначала облако частиц, движущихся к мишени (тяжелой неподвижной частице). Схематиче­ски ситуация изображена на рис. 42. В далеком прош­лом корреляций между частицами не было. Рассеяние приводит к двум эффектам (см. гл. 8): оно «разбрасы­вает» частицы (делает распределение скоростей более симметричным) и, кроме того, порождает корреляции между рассеянными частицами и рассеивателем. Корре­ляции станут заметными, если обратить скорости (на­пример, с помощью сферического зеркала). Эта ситуа­ция изображена на рис. 43 (волнистыми линиями ус­ловно показаны корреляции). Таким образом, роль рас-
350


сеяния сводится к следующему. При прямом рассеянии распределение скоростей становится более симметрич­ным и возникают корреляции между частицами. При обратном рассеянии распределение скоростей становится менее симметричным, а корреляции исчезают. Таким образом, учет корреляций приводит к основному раз­личию между прямым и обратным рассеянием.
Аналогичные рассуждения применимы и к системе многих тел. Здесь также возможны ситуации двух ти­-
Рис. 43. Влияние обращения скоростей после соударения: после нового «обращенного» соударения корреляции подавлены и скоро­сти всех частиц равны.
пов. В одном случае (прямой процесс) некоррелирован­ные частицы налетают, рассеиваются и порождают кор­релированные частицы (рис. 44). В другом случае (об­ратный процесс) коррелированные частицы налетают, корреляции при столкновениях нарушаются и после-столкновении частицы уже не коррелированы (рис. 45).
Прямой и обратный процессы отличаются последо­вательностью столкновений и корреляций во времени. В первом случае имеют место корреляции послестолкновительиыс («постстолкновительные»). Имея в виду раз­личие между пред- и послестолкновительными корреля­циями, вернемся к эксперименту с обращением скоро­стей. Начнем при t=0 — с начального состояния, соот­ветствующего корреляциям между частицами. В интер­вале времени от t=0 до t=t0 система эволюционирует «нормально»: в результате столкновений распределение скоростей приближается к распределению Максвелла. Кроме того, столкновения порождают послестолкновительные корреляции между частицами. При t=t0 проис­ходит обращение скоростей и возникает качественно но­вая ситуация. Послестолкновительные корреляции ста-
351


новятся предстолкновительными. В интервале времени от t=t0 до t=2t0 эти предстолкновительные корреляции исчезают, распределение скоростей становится менее симметричным, и к моменту времени t=2t0 полностью
восстанавливается некоррелированное состояние. Таким образом, история системы делится на два этапа. На первом этапе столкновения трансформируются в корре-
Рис. 44. Возникновение корреляций после соударения (корреляции условно изображены волнистыми линиями).
Рис. 45. Разрушение предстолкновительных корреляций (волнистые линии) при столкновениях.
ляции, на втором этапе происходит обратное превраще­ние корреляций в столкновения. Оба типа процессов — прямой и обратный — не противоречат законам дина­мики. Кроме того, как мы уже упоминали в гл. 8, полная «информация», описываемая динамикой, остается постоянной. Мы видели также, что в больцмановском описании эволюция от t=0 до t=t0 соответствует обычному убыванию H-функции, а в интервале от t=t0 до t=2t0 эволюция протекала бы аномально: H-функция возрастала бы, а энтропия убывала. Но это означало бы, что можно придумать эксперименты, как лаборатор­ные, так и численные, в которых нарушалось бы второе начало! Необратимость на интервале [0, t0] компенси­ровалась бы «антинеобратимостью» на интервале [t0, 2t0 ].
352


Такое положение нельзя признать удовлетворитель­ным. Все трудности устраняются, если перейти к новому «термодинамическому представлению», в рамках которо­го динамика, как в «преобразовании пекаря», становит­ся вероятностным процессом, аналогичным цепи Марко­ва. Следует также учесть, что обращение — процесс не
Рис. 46. Временная эволюция H-функции в эксперименте с об­ращением скоростей. В момент времени t0 происходит обращение скоростей — H-функция претерпевает разрыв. В момент времени 2t0 система находится в таком же состоянии, как в момент времени 0, — H-функцця возвращается к своему начальному значению. При всех t, за исключением t=t0, H-функция убывает. Важно подчеркнуть, что при t=t0, H-функция принимает два различных значения.
«естественный». Для обращения скоростей к молекулам извне должна поступить «информация». Для того чтобы обратить скорости, необходимо существо, аналогич­ное демону Максвелла, а за демона Максвелла прихо­дится «платить». Изобразим зависимость H-функции от времени (для какого-нибудь вероятностного процесса). Типичный график такой зависимости представлен на рис. 46. При нашем подходе (в отличие от больцмановского) эффект корреляций при переопределении H-функции сохраняется. Следовательно, в точке обращения скоростей t0 функция H должна претерпевать скачок,
353


поскольку мы внезапно создаем в этой точке аномаль­ные предстолкновительные корреляции, которые должны нарушиться позднее. Скачок H-функции соответствует энтропии, или информационной цене, которую нам при­ходится платить.
Итак, мы получаем адекватное представление вто­рого начала: в любой момент времени H-функция убы­вает (энтропия возрастает). Единственным исключением является точка t0: H-функция претерпевает в ней скачок в тот самый момент, когда система открыта. Лишь воз­действуя на систему извне, можно «обратить» скоро­сти.
Нельзя не отметить еще одно важное обстоятельство: при t=t0 новая H-функция принимает два различных значения, одно — для системы до обращения скоростей, другое — для системы после обращения скоростей. Энт­ропия системы до обращения и после обращения скоро­стей различна. Это напоминает ситуацию, происходя­щую при «преобразовании пекаря», когда сжимающий­ся и растягивающийся слои — скорости, переходящие друг в друга при обращении.
Предположим, что, прежде чем производить обраще­ние скоростей, мы достаточно долго выжидаем. В этом случае послестолкновительные корреляции имели бы произвольный радиус и энтропийная цена за обращение скоростей была бы непомерно велика. А поскольку об­ращение скоростей стало бы нам «не по карману», его исключили бы. На физическом языке это означает, что второе начало запрещает устойчивые предстолкнови­тельные корреляции на больших расстояниях.
Поразительна аналогия с макроскопическим описа­нием второго начала. Тепло и механическая энергия эк­вивалентны с точки зрения сохранения энергии (см. гл. 4 и 5), но отнюдь не второго начала. Кратко говоря, механическая энергия более «высокого сорта» (более когерентна), чем тепло, и всегда может быть превраще­на в тепло. Обратное неверно. Аналогичное различие существует на микроскопическом уровне между столк­новениями и корреляциями. С точки зрения динамики столкновения и корреляции эквивалентны. Столкнове­ния порождают корреляции, а корреляции могут разру­шать последствия столкновений. Но между столкнове­ниями и корреляциями имеется существенное различие. Мы можем управлять столкновениями и порождать
354


корреляции, но мы не в состоянии так управлять корреляциями, чтобы уничтожить последствия, вызванные столкновениями в системе. Этого существенного разли­чия недостает в динамике, но его можно учесть в тер­модинамике. Следует заметить, что термодинамика нигде не вступает в конфликт с динамикой. Термодина­мика вносит важный дополнительный элемент в наше понимание физического мира.
8. Энтропия как принцип отбора
Нельзя не удивляться тому, как сильно микроскопи­ческая теория необратимых процессов напоминает тра­диционную макроскопическую теорию. И в той, и в дру­гой теории энтропия имеет негативный аспект. В мак­роскопической теории энтропия запрещает некоторые процессы, например перетекание тепла от холодного предмета к теплому. В микроскопической теории энтро­пия запрещает некоторые классы начальных условий. Различие между тем, что запрещено, и тем, что разре­шено, поддерживается во времени законами динамики. Из негативного аспекта возникает позитивный: сущест­вование энтропии вместе с ее вероятностной интерпре­тацией. Необратимость не возникает более, как чудо, на некотором макроскопическом уровне. Макроскопическая необратимость лишь делает зримой ориентированную во времени поляризованную природу того мира, в котором мы живем.
Как мы уже неоднократно подчеркивали, в природе существуют системы с обратимым поведением, допус­кающие полное описание в рамках законов классической или квантовой механики. Но большинство интересую­щих нас систем, в том числе все химические и, следова­тельно, все биологические системы, ориентировано во времени на макроскопическом уровне. Их отнюдь не иллюзорная однонаправленность во времени отражает нарушение временной симметрии на микроскопическом уровне. Необратимость существует либо на всех уров­нях, либо не существует ни на одном уровне. Она не может возникнуть, словно чудо, при переходе с одного уровня на другой.
Мы также неоднократно отмечали, что необрати­мость является исходным пунктом других нарушений
355


симметрии. Например, по общему мнению, различие между частицами и античастицами могло возникнуть только в неравновесном мире. Это утверждение может быть распространено на многие другие ситуации. Впол­не вероятно, что с необратимостью через отбор подхо­дящей бифуркации связана и киральная симметрия. Многие из активно проводимых ныне исследований по­священы выяснению того, каким образом необратимость можно «вписать» в структуру материи.
Возможно, читатель обратил внимание на то, что при выводе микроскопической необратимости основной ак­цент мы делали на классической динамике. Но представ­ления о корреляциях и различии между пред- и послестолкновительными корреляциями применимы не только к классическим, но и к квантовым системам. Исследова­ние квантовых систем более сложно, чем исследование классических, что обусловлено различием между клас­сической и квантовой механикой. Даже малые класси­ческие системы, например система, состоящая из не­скольких твердых шаров, могут обладать внутренней необратимостью. Но для того чтобы достичь внутрен­ней необратимости в квантовой механике, необходимы большие системы (со многими степенями свободы), ко­торые встречаются в жидкости, газах или теории поля. Ясно, что исследование больших систем сопряжено со значительно большими математическими трудностями. Именно это не позволяет нам рассказать здесь о них подробнее. Тем не менее общая ситуация, с которой мы познакомились на примерах классических систем, сохра­няется и в квантовой теории: необратимость там возни­кает вследствие ограниченной применимости понятия волновой функции, обусловленной той или иной разно­видностью квантовой неустойчивости.
Применима в квантовой механике и идея о столкнове­ниях и корреляциях. Как и в классической теории, вто­рое начало запрещает существование в квантовой тео­рии дальнодействующих предстолкновительных корре­ляций.
Переход к вероятностному процессу сопровождается введением новых сущностей. Второе начало как эволю­ция от порядка к хаосу может быть понято именно в терминах этих новых понятий. Второе начало приво­дит к новой концепции материи, к описанию которой мы сейчас переходим.
356


9. Активная материя
Связав энтропию с динамической системой, мы тем самым возвращаемся к концепции Больцмана: вероят­ность достигает максимума в состоянии равновесия. Структурные единицы, которые мы используем при опи­сании термодинамической эволюции, в состоянии равно­весия ведут себя хаотически. В отличие от этого в слабо неравновесных условиях возникают корреляции и коге­рентность.
Здесь мы подходим к одному из наших главных вы­водов: на всех уровнях, будь то уровень макроскопи­ческой физики, уровень флуктуаций или микроскопиче­ский уровень, источником порядка является неравновесность. Неравновесность есть то, что порождает «поря­док из хаоса». Но, как мы уже упоминали, понятие порядка (или беспорядка) сложнее, чем можно было бы думать. Лишь в предельных случаях, например в разреженных газах, оно обретает простой смысл в со­ответствии с пионерскими трудами Больцмана.
Сравним еще раз динамическое описание физическо­го мира с помощью сил и полей и термодинамическое описание. Как уже упоминалось, нетрудно составить программы численных экспериментов, в которых взаимо­действующие частицы, первоначально распределенные случайным образом, в некоторый момент времени рас­полагаются в узлах правильной решетки. Динамическая интерпретация этого явления гласит: возникновение порядка обусловлено игрой сил взаимодействия между частицами. Термодинамическая интерпретация утверж­дает иное: наблюдается общая тенденция к установле­нию хаоса (система изолирована), но хаоса, проявляю­щегося в совершенно других структурных единицах (в рассматриваемой модели это — коллективные моды, охватывающие большое число частиц). В этой связи, по-видимому, уместно напомнить неологизм, введенный нами в гл. 6 для обозначения новых структурных еди­ниц, которые ведут себя некогерентно, несогласованно в состоянии равновесия системы; мы назвали их «гипнонами», или «сомнамбулами», поскольку в состоянии равновесия они движутся как во сне, «не замечая» друг друга. Каждый из гипнонов может обладать сколь угод­но сложной структурой (достаточно вспомнить о том, на­сколько сложны молекулы ферментов), но в состоянии
357


равновесия их сложность обращена «внутрь» и никак не проявляется «снаружи». Например, внутри молекулы существует интенсивное электрическое поле, но в раз­реженном газе этим полем можно пренебречь: оно ни­как не сказывается на поведении других молекул.
Одним из главных предметов исследования в совре­менной физике является проблема элементарных частиц. Известно, что элементарные частицы далеко не элемен­тарны. По мере того как мы поднимаемся по шкале энергий, перед нами открываются все новые и новые «слои» в структуре элементарных частиц. Но что такое элементарная частица? Можно ли считать, например, что планета Земля — элементарная частица? Разумеет­ся, нельзя, потому что часть энергии Земли приходится на ее взаимодействие с Солнцем, Луной и другими пла­нетами. Понятие же элементарной частицы подразуме­вает «автономию», с трудом поддающуюся описанию с помощью обычных понятий. Взять, например, хотя бы электроны и фотоны. При рассмотрении их мы сталки­ваемся с дилеммой: либо отдельные частицы не сущест­вуют (часть энергии «обобществлена» электронами и фотонами, т. е. приходится на коллективные моды сис­темы электронов и протонов), либо, если исключить взаимодействие, существуют свободные (не взаимодей­ствующие) электроны и фотоны. Даже если бы мы зна­ли, как можно каждую частицу заэкранировать от дру­гих, исключение взаимодействия представляется слиш­ком радикальной мерой. Электроны поглощают или ис­пускают фотоны. Выход из создавшегося затруднения мог бы состоять в переходе к физике процессов. В этом случае структурные единицы (элементарные частицы) соответствовали бы определению гипнонов, так как в со­стоянии равновесия они ведут себя независимо. Мы надеемся, что наша гипотеза вскоре получит эксперимен­тальное подтверждение. Особенно подкрепило бы ее об­наружение стрелы времени, выражающей глобальную эволюцию природы, непосредственно во взаимодействии атомов с фотонами (или другими нестабильными элемен­тарными частицами).
Широко обсуждается в современной науке и пробле­ма космической эволюции. Каким образом мир мог быть столь «упорядоченным» на первых этапах эволю­ции после большого взрыва? Тем не менее порядок не­обходим, если мы хотим понять космическую эволюцию
358


как постепенное движение от порядка к хаосу.
Для удовлетворительного решения проблемы нам не­обходимо знать, адекватны ли гипноны экстремальным условиям с колоссальными температурами и плотностью материи, характерными для ранних этапов развития Вселенной. Разумеется, одной термодинамике не под силу решить эти проблемы, как не в силах решить их и одна динамика, даже в высшей своей форме — теории поля. Именно поэтому объединение динамики и термо­динамики открывает новые перспективы. Независимо от всяких прогнозов нельзя не удивляться разительным переменам, происшедшим в естествознании с тех пор, как было сформулировано второе начало (т. е. за какие-нибудь сто пятьдесят лет). Сначала физикам казалось, будто атомистические представления противоречат по­нятию энтропии. Больцман пытался спасти механисти­ческое мировоззрение ценой сведения второго начала к вероятностному утверждению, весьма важному для практических приложений, но не имеющему фундамен­тального значения. Мы не знаем, каким будет оконча­тельное решение, но современная ситуация коренным образом отличается от ситуации полуторавековой дав­ности. Материя теперь не есть нечто данное. В современ­ной теории она «конструируется» из более элементарного понятия в терминах квантованных полей. В этом конст­руировании важная роль отводится термодинамическим понятиям (необратимости, энтропии)*.
Подведем итоги достигнутого. В первой и второй части нашей книги неоднократно подчеркивалось, что на уровне макроскопических систем первостепенное зна­чение имеет второе начало (и связанное с ним понятие необратимости).
В третьей части мы стремились показать, что в на­стоящее время открывается возможность выхода за рамки макроскопического уровня, и продемонстриро­вать, что означает необратимость на микроскопическом уровне.
Переход от макроскопического уровня к микроско­пическому требует коренного пересмотра наших взгля­дов на фундаментальные законы физики. Только пол­ностью избавившись от классических представлений
* Речь, очевидно, идет о понятии материи в специально науч­ном, физическом, а не философском смысле. — Прим. перев.
359


(как в случае достаточно нестабильных систем), мы можем говорить о «внутренней случайности» и «внут­ренней необратимости».
Для таких систем мы можем ввести новое расширен­ное описание времени с помощью оператора Т. Как бы­ло показано на примере «преобразования пекаря» (гл. 9 «От случайности к необратимости»), этот оператор имеет в качестве собственных функций разбиения фазо­вого пространства (см. рис. 39).
Таким образом, ситуация, с которой мы сталкиваем­ся, очень напоминает ситуацию, сложившуюся в кванто­вой механике. Существуют два возможных описания: либо мы выбираем точку в фазовом пространстве и тог­да не знаем, какому разбиению она принадлежит и, сле­довательно, каков ее внутренний возраст, либо мы зна­ем внутренний возраст, но тогда нам известно только разбиение, а не точная локализация точки.
После того как мы ввели внутреннее время Т, энтро­пию можно использовать как принцип отбора для пе­рехода от начального описания с помощью функции распределения r к новому описанию с помощью функ­ции распределения r^[1], которая обладает внутренней стре­лой времени, согласующейся со вторым началом термо­динамики. Основное различие между r и r^проявляется в разложениях этих функций по собственным функциям оператора Т (см. гл. 7 «Рождение квантовой механи­ки»). В функцию r все внутренние возрасты независи­мо от того, принадлежат ли они прошлому или будуще­му, входят симметрично. В функции r^ в отличие от r прошлое и будущее играют различные роли: прошлое входит в r^, а будущее остается неопределенным. Асимметрия прошлого и будущего означает, что сущест­вует стрела времени. Новое описание обладает важной особенностью, заслуживающей того, чтобы ее отметить: начальные условия и законы изменения перестают быть независимыми. Состояние со стрелой времени возникает под действием закона, также наделенного стрелой вре­мени и трансформирующего состояние, но сохраняющего стрелу времени.
В нашей книге мы рассматривали главным образом классическую ситуацию20. Но все сказанное применимо и к квантовой механике, в которой ситуация несколько сложнее, поскольку существование постоянной Планка
360


лишает смысла понятие траектории и тем самым при­водит к своего рода делокализации в фазовом простран­стве. Таким образом, квантовомеханическая делокализация накладывается на делокализацию, вызванную необратимостью.
В гл. 7 мы подчеркивали, что две великие револю­ции в физике XX в. связаны с включением в фундамен­тальную структуру физики двух запретов, чуждых клас­сической механике: невозможности распространения сигналов со скоростью больше скорости света и невоз­можности одновременного измерения координат и им­пульса.
Неудивительно, что и второе начало, также ограни­чивающее наши возможности активного воздействия на материю, приводит к глубоким изменениям в структуре основных законов физики.
Нам бы хотелось закончить третью часть нашей кни­ги предостережением. Феноменологическую теорию не­обратимых процессов ныне можно считать вполне сло­жившейся. В отличие от нее микроскопическая теория необратимых процессов делает лишь первые шаги. Когда читалась верстка этой книги, в нескольких лабо­раториях подготавливались эксперименты для проверки правильности микроскопической теории. Пока эти экс­перименты не будут выполнены, умозрительный элемент в новой теории неизбежен.
361


ЗАКЛЮЧЕНИЕ. С ЗЕМЛИ НА НЕБО: НОВЫЕ ЧАРЫ ПРИРОДЫ
В любой попытке сблизить обла­сти опыта, относящиеся к духовной и физической сторонам нашей натуры, время занимает ключевую позицию.
А. С. Эддингтон1
1. Открытая наука
Наука, несомненно, подразумевает активное воздей­ствие на природу, но вместе с тем она является попыт­кой понять природу, глубже проникнуть в вопросы, ко­торые задавало не одно поколение людей. Один из этих вопросов звучит как лейтмотив (почти как наважде­ние), на страницах этой книги, как, впрочем, и в исто­рии естествознания и философии. Речь идет об отноше­нии бытия и становления, неизменности и изменения.
В начале нашей книги мы упоминали о вопросах, над которыми размышляли еще философы-досократики. Не накладывается ли изменение, порождающее все ве­щи и обрекающее их на гибель, извне на некую инерт­ную материю? Не является ли изменение результатом внутренней независимой активности материи? Необхо­дима ли внешняя побуждающая сила или становление внутренне присуще материи? Естествознание XVII в. встало в оппозицию к биологической модели спонтан­ной и автономной организации живых существ. Но тогда же естествознанию пришлось столкнуться с другой фун­даментальной альтернативой. Является ли природа внут­ренне случайной? Не является ли упорядоченное пове­дение лишь преходящим результатом случайных столк­новений атомов и их неустойчивых соединении?
Одним из главных источников неотразимой привле­кательности современной науки было ощущение, что она открывала вечные законы, таившиеся в глубине нескон­чаемых преобразований природы, и тем навсегда изгна­ла время и становление. Открытие порядка в природе рождало чувство интеллектуальной уверенности. Вот что пишет об этом французский социолог Леви-Брюль:
362


«У нас существует постоянное ощущение интеллек­туальной уверенности, столь прочной, что, кажется, не­что не в состоянии ее поколебать. Ибо даже если пред­положить, что мы внезапно наткнулись на какое-нибудь совершенно таинственное явление, причины которого со­вершенно ускользают от нас, то мы все же совершенно убеждены в том, что наше неведение является временным, что такие причины у данного явления существуют, что раньше или позже они будут вскрыты. Таким обра­зом, природа, среди которой мы живем, является для нас, так сказать, уже заранее «интеллектуализированной», умопостигаемой: она вся — порядок и разум, как и тот ум, который ее мыслит и среди которой он дви­жется. Наша повседневная деятельность вплоть до са­мых незначительных своих деталей предполагает пол­ную и спокойную веру в неизменность законов приро­ды»2.
Ныне наша уверенность «в рациональности» природы оказалась поколебленной отчасти в результате бурного роста естествознания в наше время. Как было отмечено в «Предисловии», наше видение природы претерпело коренные изменения. Ныне мы учитываем такие аспек­ты изменения, как множественность, зависимость от времени и сложность. Некоторые из сдвигов, происшед­ших в наших взглядах на мир, описаны в этой книге.
Мы искали общие, всеобъемлющие схемы, которые допускали бы описание на языке вечных законов, но обнаружили время, события, частицы, претерпевающие различные превращения. Занимаясь поиском симметрии, мы с удивлением обнаружили на всех уровнях — от эле­ментарных частиц до биологии и экологии — процессы, сопровождающиеся нарушением симметрии. Мы описа­ли в нашей книге столкновение между динамикой с при­сущей ей симметрией во времени и термодинамикой, для которой характерна односторонняя направлен­ность времени.
На наших глазах возникает новое единство: необра­тимость есть источник порядка на всех уровнях. Необра­тимость есть тот механизм, который создает порядок из хаоса. Как могли столь радикальные изменения в на­ших взглядах на природу произойти за сравнительно короткое время — на протяжении последних десятиле­тий? Мы убеждены, что столь быстрая и глубокая пе­рестройка наших взглядов на мир свидетельствует о
363


значительной роли, отводимой в нашем восприятии при­роды построениям нашего разума. Эту мысль велико­лепно выразил Нильс Бор в беседе с Вернером Гейзенбергом во время экскурсии в замок Кронберг:
«Разве не странно, как изменяется этот замок, стоит лишь на миг вообразить, что здесь жил Гамлет? Как ученые, мы твердо знаем, что замок построен из кам­ней, и восхищаемся тем, как искусно сложил их архи­тектор. Камни, зеленая, потемневшая от времени крыша, деревянная резьба в церкви — вот и весь замок. Ничто из названного мной не должно было бы измениться от того, что здесь жил Гамлет, и тем не менее все пол­ностью изменяется. Стены и крепостные валы начинают говорить на другом языке... Мы знаем о Гамлете лишь то, что его имя встречается в хронике XIII в. ...Но каж­дый знает, какие вопросы Шекспир заставил его зада­вать, в какие глубины человеческого духа он проник, поэтому Гамлет не мог не обрести свое место на зем­ле — здесь, в Кронберге»3.
Вопрос о природе реальности был центральным в увлекательном диалоге между Эйнштейном и Таго­ром4. Эйнштейн подчеркивал, что наука должна быть. независима от существования наблюдателя. Такая пози­ция привела его к отрицанию реальности времени как необратимости, эволюции. Тагор же утверждал, что, даже если бы абсолютная истина могла существовать, она была бы недоступна человеческому разуму. Инте­ресно, что в настоящее время эволюция науки происхо­дит в направлении, указанном великим индийским поэтом. Что бы мы ни называли реальностью, она от­крывается нам только в процессе активного построения, в котором мы участвуем. По меткому выражению Д. С. Котари, «простая истина состоит в том, что ни измерение, ни эксперимент, ни наблюдение невозможны без соответствующей теоретической схемы»5.
2. Время и времена
На протяжении более трех столетий в физике господ­ствовало мнение о том, что время по существу представ­ляет собой геометрический параметр, позволяющий описывать последовательность динамических состояний. Эмиль Мейерсон6 предпринял попытку представить ис-
364


торию современной науки как постепенную реализацию того, что он считал основной категорией человеческого разума: сведения различного и изменяющегося к тождественному и неизмененному. Время подлежало полному исключению.
Ближе к нашему времени выразителем той же тенденции в формулировке физики без ссоотнесения с необ­ратимостью на фундаментальном уровне стал Эйнштейн.
Историческая сцена разыгралась 6 апреля 1922 г.7 в Париже на заседании Философского общества (Societe de Philosophiе), на котором Анри Бергсон в полемике с Эйнштейном пытался отстаивать множественность со­существующих «живых» времен. Ответ Эйнштейна был бесповоротен: он категорически отверг «время филосо­фов». Живой опыт не может спасти то, что отрицается наукой.
Реакция Эйнштейна в какой-то мере была обосно­ванна. Бергсон явно не понимал теорию относительно­сти Эйнштейна. Но отношение Эйнштейна к Бергсону не было свободно от предубеждения: duree (длитель­ность), бергсоновское «живое» время относится к числу фундаментальных, неотъемлемых свойств становления, необратимости, которую Эйнштейн был склонен прини­мать лишь на феноменологическом уровне. Мы уже упо­минали о беседах Эйнштейна с Карнапом (см. гл. 7). Для Эйнштейна различия между прошлым, настоящим и будущим лежали за пределами физики.
В этой связи большой интерес представляет перепис­ка между Эйнштейном и одним из ближайших друзей его молодости в цюрихский период Микеланджело (Ми­шелем) Бессо8. Инженер по профессии и естествоиспы­татель по призванию, Бессо в последние годы жизни все больше интересовался философией, литературой и проблемами, затрагивающими самую суть человеческого бытия. В своих письмах к Эйнштейну он непрестанно задавал одни и те же вопросы. Что такое необрати­мость? Как она связана с законами физики? И Эйн­штейн неизменно отвечал Бессо с терпением, которое он выказывал только к своему ближайшему другу: необра­тимость есть лишь иллюзия, обусловленная «неверны­ми» начальными условиями. Диалог двух друзей про­должался многие годы до кончины Бессо, который был старше Эйнштейна на восемь лет и умер за несколько месяцев до смерти Эйнштейна. В последнем письме
365


к сестре и сыну Бессо Эйнштейн писал: «Своим проща­нием с этим удивительным миром он [Мишель] ...не­сколько опередил меня. Но это ничего не значит. Для нас, убежденных физиков, различие между прошлым, настоящим и будущим — не более чем иллюзия, хотя и весьма навязчивая». В эйнштейновском стремлении по­стичь фундаментальные законы физики познаваемое отождествлялось с незыблемым.
Почему Эйнштейн столь упорно противился введе­нию необратимости в физику? Об этом можно лишь до­гадываться. Эйнштейн был очень одиноким человеком. У него было мало друзей, мало сотрудников, мало сту­дентов. Он жил в мрачную эпоху: две мировые войны, разгул антисемитизма. Неудивительно, что для Эйнштей­на наука стала своего рода средством преодоления бур­лящего потока времени. Сколь разителен контраст меж­ду установкой на «безвременную» науку и научными трудами самого Эйнштейна! Его мир полон наблюдате­лей-ученых, которые находятся в различных системах отсчета, движущихся относительно друг друга, или на различных звездах, отличающихся своими гравитацион­ными полями. Все эти наблюдатели обмениваются ин­формацией, передаваемой с помощью сигналов по всей Вселенной. Эйнштейна интересовал лишь объективный смысл этой коммуникации. Однако не будет преувели­чением сказать, что Эйнштейн, по-видимому, был весь­ма близок к признанию тесной взаимосвязи между пере­дачей сигналов и необратимостью. Коммуникация зало­жена в самой основе наиболее обратимого из процес­сов, доступных человеческому разуму, — прогрессивного роста знания.

3. Энтропийный барьер
В гл. 9 мы описали второе начало как принцип от­бора: каждому начальному условию соответствует не­которая «информация». Допустимыми считаются все начальные условия, для которых эта информация конеч­на. Но для обращения времени необходима бесконеч­ная информация; мы не можем создавать ситуации, ко­торые переносили бы нас в прошлое! Чтобы предотвра­тить путешествия в прошлое, мы возвели энтропийный барьер.
Нельзя не отметить интересную аналогию между эн-
366


тропийным барьером и представлением о скорости света как о максимальной скорости передачи сигналов. Суще­ствование предельной скорости распространения сигна­лов — один из основных постулатов теории относитель­ности Эйнштейна (см. гл. 7). Такой барьер необходим для придания смысла причинности. Предположим, что мы покинули бы Землю на фантастическом космическом корабле, способном развивать сверхсветовую скорость. Тогда мы смогли бы обгонять световые сигналы и тем самым переноситься в свое собственное прошлое. Энтро­пийный барьер также необходим для того, чтобы при­дать смысл передаче сигналов. Мы уже упоминали о том, что необратимость и передача сигналов тесно свя­заны между собой. Норберт Винер убедительно показал, к каким ужасным последствиям привело бы существова­ние двух направлений времени. Следующий отрывок из знаменитой «Кибернетики» Винера заслуживает того, чтобы привести его:
«Очень интересный мысленный опыт — вообразить разумное существо, время которого течет в обратном на­правлении по отношению к нашему времени. Для тако­го существа никакая связь с нами не была бы возмож­на. Сигнал, который оно послало бы нам, дошел бы к нам в логическом потоке следствий — с его точки зре­ния — и причин — с нашей точки зрения. Эти причины уже содержались в нашем опыте и служили бы есте­ственным объяснением его сигналов без предположения о том, что разумное существо послало сигнал. Если бы оно нарисовало нам квадрат, остатки квадрата пред­ставились бы предвестником последнего и квадрат ка­зался бы любопытной кристаллизацией этих остатков, всегда вполне объяснимой. Его значение казалось бы столь же случайным, как те лица, которые представля­ются при созерцании гор и утесов. Рисование квадрата показалось бы катастрофической гибелью квадрата — внезапной, но объяснимой естественными законами. У этого существа были бы такие же представления о нас. Мы можем, сообщаться только с мирами, имею­щими такое же направление времени»9.
Именно энтропийный барьер гарантирует единствен­ность направления времени, невозможность изменить ход времени с одного направления на противополож­ное.
На страницах нашей книги мы неоднократно обраща-
367


ли внимание на важность доказательства несуществования. Эйнштейн первым осознал важность такого рода доказательства, положив в основу понятия относитель­ной одновременности невозможность передачи инфор­мации со скоростью, большей, чем скорость света. Вся теория относительности строится вокруг исключения «ненаблюдаемых» одновременностей. Эйнштейн усматри­вал в этом шаге аналогию с запретом вечного двигате­ля в термодинамике. Однако некоторые современники Эйнштейна, например Гейзенберг, указывали на важное различие между несуществованием вечного двигателя и невозможностью передачи сигналов со сверхсветовы­ми скоростями. В термодинамике речь идет об утверж­дении, что некоторая ситуация не встречается в природе; в теории относительности утверждается невозмож­ность некоторого наблюдения, т. е. своего рода диалога, коммуникации между природой и тем, кто ее описы­вает. Воздвигнув квантовую механику на основе запре­та всего, что квантовый принцип неопределенности оп­ределяет как ненаблюдаемое, Гейзенберг считал себя следующим примеру Эйнштейна, несмотря на скепти­цизм, с которым Эйнштейн встретил квантовую меха­нику.
До тех пор пока мы считали, что второе начало вы­ражает лишь практическую невероятность того или ино­го процесса, оно не представляло теоретического инте­реса. У нас всегда оставалась надежда, что, достаточно поднаторев в технике, нам все же удастся преодолеть запрет, налагаемый вторым началом. Но, как мы виде­ли, этим надеждам не суждено было сбыться. Корень всех «бед» — в отборе допустимых состояний. Лишь после того, как возможные состояния отобраны, всту­пает в силу вероятностная интерпретация Больцмана. Именно Больцман впервые установил, что возрастание энтропии соответствует возрастанию вероятности, бес­порядка. Но интерпретация Больцмана основывается на предпосылке, что энтропия есть принцип отбора, на­рушающий временную симметрию. Любая вероятност­ная интерпретация становится возможной лишь после того, как временная симметрия нарушена.
Несмотря на то что мы многое почерпнули из больцмановской интерпретации энтропии, наша интерпретация второго начала зиждется на совсем другой основе, поскольку мы имеем последовательность
368


второе начало как принцип отбора, приводящий к нарушению симметрии
?
вероятностная интерпретация
?
необратимость как усиление беспорядка
Только объединение динамики и термодинамики с помощью введения нового принципа отбора придает второму началу фундаментальное значение эволюцион­ной парадигмы естественных наук. Этот пункт настолько важен, что мы остановимся на нем подробнее.
4. Эволюционная парадигма
Мир динамики, классической или квантовой, — мир обратимый. В гл. 8 мы уже отмечали, что в таком мире эволюция невозможна; «информация», представимая в динамических структурных единицах, остается постоян­ной. Тем большее значение имеет открывающаяся те­перь возможность установить эволюционную парадигму в физике, причем не только на макроскопическом, но и на всех уровнях описания. Разумеется, для этого необ­ходимы особые условия: мы видели, что сложность си­стемы должна превышать определенный порог. Впрочем, необычайная важность необратимых процессов свиде­тельствует о том, что большинство рассматриваемых нами систем удовлетворяет этому требованию. Приме­чательно, что восприятие ориентированного времени возрастает по мере того, как повышается уровень био­логической организации и достигает, по-видимому, куль­минационной точки в человеческом сознании.
Насколько велика общность этой эволюционной па­радигмы? Она охватывает изолированные системы, эволюционирующие к хаосу, и открытые системы, эво­люционирующие ко все более высоким формам слож­ности. Неудивительно, что метафора энтропии соблазни­ла авторов некоторых работ по социальным и экономи­ческим проблемам. Ясно, что, применяя естественно­научные понятия к социологии или экономике, необхо­димо соблюдать осторожность. Люди — не динамические объекты, и переход к термодинамике недопустимо фор­мулировать как принцип отбора, подкрепляемый дина­микой. На человеческом уровне необратимость обретает более глубокий смысл, который для нас неотделим от смысла нашего существования. С этой точки зрения
369

<< Пред. стр.

страница 7
(всего 11)

ОГЛАВЛЕНИЕ

След. стр. >>

Copyright © Design by: Sunlight webdesign