LINEBURG


<< Пред. стр.

страница 2
(всего 5)

ОГЛАВЛЕНИЕ

След. стр. >>



3. Взаимосвязь инженерной и научной деятельности
Инженерная и научная деятельность являются различными сферами практики . Первая из них является духовной деятельностью в сфере материального производства и функционируют в его рамках на основе науки и опыта самого материального производства . Вторая отделяется от сферы материального производства и начинает выполнять функцию выработки знаний об окружающем мире .
Безусловно , исторически первой возникла техническая деятельность . Выделившись из животного мира люди вступили в историю полуживотными , грубыми , бессильными перед могуществом природы . Они еще не осознают все возможности своей жизнедеятельности . Человек обеспечивал себе питанием при помощи животнообразных , инстинктивных форм труда . Но постепенно люди начинают все более активно противостоять природе , вырабатывают первые технические приемы изменения природы , переработки ее веществ . "В слабости первых людей , и , одновременно , в их силе , проявляемой в подчинении природы и овладения ею при помощи орудий труда , которых лишены животные , не исключая и обезъян , заключалась одна из специфических форм противоречий , толкавших древних людей вперед" ( 33 , 45 ) .
В процессе активного противостояния природе у человека возникают духовные моменты , отсутствующие у животных : сознательное целеполагание , концентрация внимания , волевое поддержание необходимого напряжения , наслаждение трудом как игрой не только физических , но и интеллектуальных сил . Именно в труде , в процессе создания орудий труда возникает возможность идеального плана деятельности . "Начавшаяся вместе с развитием руки , вместе с трудом господство над природой , - писал Ф.Энгельс , - расширяло с каждым новым шагом вперед кругозор человека . В предметах природы он постоянно открывал новые , до этого неизвестные свойства " ( 34. 489 ) . Каждый новый трудовой акт будил мысль человека , ставил перед ним вопрос о том , что и как надо сделать . Создание орудий труда требовало мысленного сохранения свойств в таких сочетаниях , которых нет в природных предметах . Он брал , к примеру , палку , камень и лиану и сооружал из них молот . Это обеспечивало движение образов в отрыве от их конкретной ситуации действия с предметом , идеальной деятельности субъекта , появление эмпирических знаний .
В эмпирический период развития техники люди использовали те законы природы , которые они открывали не в ходе теоретического познания действительности , а в ходе практической деятельности методом проб и ошибок . Эти законы гораздо позже были познаны наукой .
Первобытный человек в процессе обработки каменных орудий неосознанно использовал закон параллелограмма сил . Поднимая и перемещая тяжести он использовал законы рычагов первого и второго рода . В гончарном круге он стихийно использовал выравнивающий эффект маховика , а в первобытном вертикальном ткацком станке - силу тяжести , не зная законов тяготения . Он находил эти закономерности эмпирическим путем , аккумуляцией производственного опыта
Появление эмпирических знаний , их пополнение и обработка постепенно приводила к зачатков научных знаний . Изготовление и употребление ручных орудий труда заложили основы механики и физики , практические знания о животных и растениях - биологии , определение времени начала полевых работ и ориентации на местности - астрономии , необходимость измерения земельных участков , воды , зерна , построек - математики .
Таким образом начала инженерной и научной деятельности уходят в далекое прошлое человечества . Однако эти две сферы умственного труда в их современном понимании возникают гораздо позже . Правда , наука как деятельность по производству систематических знаний зарождается еще в древнем мире в условиях рабовладельческого общества . Именно тогда возникает возможность появления выводного знания , выделения абстрактно общего из конкретного . Именно тогда часть общества получает время , свободное от материального производства и появляются люди науки , которые начинают заниматься только выработкой знания , практическая в том числе и инженерная ценность которого отрицалась . Один из величайших людей античности Аристотель писал : " мы считаем , что более мудр во всякой науке тот , кто более точен и более способен научить выявлению причин , и , ... что из наук в большей мере мудрость та , которая желательна ради нее самой и для познания , нежели та , которая желательна ради извлекаемой из нее пользы " ( 35,68 ) .
Идеал "чистой" научной деятельности не запятнанной практическими интересами существовал довольно длительный период времени , который охватывает всю античность и феодальное общество . Причина того , что техническая и научная деятельность развивались изолировано друг от друга , двоякая . С одной стороны , техническая деятельность этого времени имело дело , в основном , с ручными орудиями труда для изготовления и функционирования которых достаточно было производственного опыта и эмпирических знаний . Другими словами не было со стороны технической деятельности востребованности в научных знаниях , техническая деятельность в эту эпоху почти не нуждалась в систематическом изучении природы . С другой стороны , наука еще не обладала такими знаниями и в таком виде , которые можно было бы использовать в технической деятельности .
Только в эпоху Возрождения из сферы технической деятельности начинает выделяться ее особый вид - инженерная деятельность ориентирующаяся не только на производственный опыт , но и на использование научных знаний . Великий Леонардо да Винчи во фрагменте "О заблуждении тех , кто пользуется практикой без науки" писал : "Те , кто влюбляется в практику без науки , подобны кормчим , выходящим в плавание без руля и компаса... Практика всегда должна быть построена на хорошей теории" ( 36 , 367 ) .
Но существующие традиции имеют огромную силу сопротивления . И в эпоху Возрождения и значительно позже вплоть до появления крупного машинного производства действенной связи между инженерной и научной деятельностью не было . Более того , как констатирует Дж . Бернал , "сама промышленная революция в начальных стадиях своего развития не являлась плодом каких - либо достижений науки ; творцами ее были ремесленники - изобретатели , чей успех обусловливался исключительно благоприятными экономическими условиями " ( 37 , 291 ) . Изобретатель прядильной машины - самопрялки "Дженни" , открывшей первый этап промышленного переворота в Англии , Дж. Харгривс совмещал профессии ткача и плотника . Делец .Р. Аркрайт запатентовал прядильную ватерную машину комбинируя принципы других изобретателей . Рабочий - суконщик Дж. Кей изобрел механический ( самолетный ) челнок ткацкого станка . Хозяин мастерской Дж . Уатт в процессе ремонта паровой атмосферной машин английского кузнеца Ньюкомена создает универсальную паровую машину с цилиндрами двойного действия . Маханик Дж.Стифенсон изобрел паровоз , который решил проблему создания парового железнодорожного транспорта . Бродячий живописец и чертежник , подмастерье у ювелира Роберт Фултон изобрел пароход . Английские фермеры Фаулер и Говард выработали наиболее подходящее сочетание паровой машины и плуга , создав паровой плуг .
И все же тенденция взаимосвязи технической и научной деятельности и формирование на этой основе инженерной деятельности в ходе промышленной революции становится все более сильной . Промышленная революция дала огромный стимул научной деятельности . Ее результаты в свою очередь находят техническое применение . Начинается история взаимосвязи инженерной и научной деятельности .
Для конца 18 и почти всего 19 веков характерно тесное сотрудничество в деятельности инженеров и ученых . До этого времени в развитии и функционировании ремесленного производства большую роль играли индивидуальные качества производителя - его сноровка , знания , опыт , умение . Психологические особенности индивида накладывали печать индивидуальности , неповторимости на производимые культурные ценности . С появлением крупного машинного производства рабочий становится простой механической силой , придатком машины . Его трудовые акты приобрели характер зависимости от работы машины , становятся стереотипными . Рабочему требовалось все меньше знаний . Происходит отчуждение духовных компонентов материального производства от физического труда , от знаний , сведений , умения отдельного рабочего , но не от системы материального производства . Весь процесс производства теперь требует все больше интеллектуальных сил. Крупное машинное производство может развиваться и функционировать только на научной основе . Духовные компоненты материального производства контактируются с компонентами духовного производства в единую творческую деятельность . Возникает заказ превращения науки в производительную силу общества , глубокого проникновения науки в производство и поэтому формирования особой группы людей внутри сферы материального производства с привилегией заниматься исключительно умственным трудом функция которого - разработка способов использования науки в производстве и утилитарное употребление научных знаний в овеществленном виде - в виде новой техники и технологии . В силу этих обстоятельств постепенно , однако довольно быстрыми темпами , формируется массовая профессия инженера в ее современном понимании .
Появление профессии инженера , который встал между ученым и непосредственным агентом производства, разрешило противоречие между универсальным характером деятельности ученого и той его опытно - конструкторской функцией , которая возникла на машинной ступени развития производства . Опытно - конструкторская функция становится функцией инженера . Однако в деятельности инженеров и ученых с начала 19 века развивается тесное сотрудничество , что ведет к взаимному обогащению и науки и производства . Техника машинного производства в силу своей сложности не могла дальше развиваться без науки , предполагала научную деятельность .Начинается массовое изучение уже установившихся промышленных процессов - паровой машины .металлургических процессов и т. д. Это становится могучей питательной средой для бурного развития естествознания . Вместе с тем , крупные научные открытия ( электричество , успехи в химии ) в дальнейшем вызвали к жизни новые технические устройства и даже новые отрасли промышленности телеграф , производство синтетических красителей и др . ) . Научные открытия получают простор для своего промышленного применения к процессу которого подключаются инженеры . Так , первый этап развития электрического двигателя постоянного тока берет свое начало от опытов Фарадея , открывшего явления взаимного вращения магнитов и электрических токов . На втором же этапе электрический двигатель выходит за стены научной лаборатории и характеризуется практическим направлением конструкторов - изобретателей (Якоби, Девенпорт, Фроман). "Практическое применение науки в середине 19 века развивалось настолько быстрее, - писал Дж. Бернал, - чем сама наука, что организация этого применения и ее дальнейшее развитие стали делом практики" (37, 305).
Появившиеся инженеры нового типа руководствовались в своей деятельности не только производственным опытом , но и научными знаниями , сочетали науку с практикой . Это сочетание науки с производством породило особый класс наук - технические науки. Правда предпочтение практического знания умозрительному отдавал еще Р. Декарт, который проявил глубокую интуицию в характере надвигающейся новой эпохи . Из сферы научного знания примат все больше отдается тем областям , которые имели непосредственный выход в практику . На первое место во всей системе научного знания становится механика , которая выступает не только как источник технических нововведений , но и как основа мировоззрения . В механике видели условие и источник успехов баллистики , гидротехники и вообще прикладных результатов и во тоже время в ней видели схему , объясняющую структуру и динамику мироздания. Но по мере усложнения технической основы крупного машинного производства наука играет все большую роль и в самом производстве и в обществе в целом .
Однако отдельному субъекту стало не под силу заниматься одновременно и производством техники и выработкой технического знания . Последнее оформляется в особого рода духовную деятельность . Наука начинает применяться не только в качестве материализованного научного знания в технике и технологии , но и в своей непосредственной форме , в форме знаний . Это в свою очередь потребовало определенного изменения характера научных знаний .
В середине и особенно в конце 19 века постепенно развивается профессионализация труда инженеров и ученых. К концу века инженеры и ученые представляли собой уже гораздо более изолированные профессиональные корпорации. Именно в это время английский историк науки У. Уэвелл ввел в оборот термин "ученый" для обозначения специалистов, занимающихся научной деятельностью. В последней четверти 19 века появляются научные лаборатории с профессиональными учеными в них. Параллельно этому оформляется и профессиональная коорпорация инженеров . В силу дальнейшего разделения общественного труда контакт в деятельности ученых и инженеров был утерян. Характеризуя сложившееся положение Жд. Бернал писал, что в 19 веке "вместе с быстрым ростом производства машин рос и разрыв между относительно небольшим числом исследователей нового - ученых и множеством тех, кто реализует и использует эти научные открытия - инженеров" ( 37, 435 ). В общественном сознании формируется мнение, что научная деятельность ограничена рамками производства нового знания, а инженерная - разработкой способов и форм его технического и технологического использования. Ученые не "опускались" до внедрения своих знаний в производство. Г. Герц, открывший существование предсказанных Максвеллом электромагнитных волн, фотоэлектрический эффект и усердно занимающийся основами механики совершенно не думал о практическом применении результатов своей научной деятельности. К. Рентген открыл Х-лучи позднее названые его именем и хотя по образованию был инженером но по виду своей деятельности ученого не принимал никакого участия в создании рентгеновской технике - рентгенодиагностике и рентгенотерапии. Это совсем не значит. что они отрицали возможность практического применения результатов своих научных изысканий. В своем первом сообщении об открытии Х-лучей К.Рентген обращает внимание на применимость открытых лучей для проверки производственной обработки металлов, не говоря уже о применении этих лучей в медицине. Но ученые того времени не считали своим долгом заниматься практическими проблемами. Применение результатов научной деятельности было делом других людей и прежде всего инженеров. И это применение впоследствии имели огромное значение. Открытие электрических волн Г. Герцом привело к развитию беспроволочного телеграфа благодаря работам Попова, Брауна и Маркони. Радиовещание , телевидение и радарная техника неотделимы от результатов научного вклада Г. Герца, но применением этих результатов занимался не их автор, а Либен, разрабатывавший многостороннее применение электронных трубок и многочисленная армия инженеров- изобретателей. Такова же судьба и работ К.Рентгена "Несмотря на то, что Рентген по образованию был инженером, - пишет немецкий историк науки Ф.Гернек, - он не участвовал создании и дальнейшем развитии рентгеновской техники. Это сделали другие : ученые и дельцы, которые собрали богатый урожай на целине" (38, 93). Одним из первых нашел техническое применение открытию К. Рентгена американец Эдисон. Он создал удобный демонстрационный аппарат и организовал менее чем через год после открытия рентгеновских лучей в Нью-Йорке рентгеновскую выставку, на которой посетители могли разглядывать собственную руку на светящемся экране. "Рентген прекрасно понимал большое научное. медицинское и технологическое значение своего открытия,- пишет далее Ф. Герек. -Однако ему чужда была всякая мысль о его денежной эксплуатации...Он не думал также ни о каких охранительных правах на технику его опыта.Рентген не думал практически реализовать свое открытие. Он не был "коммерции советником", подобно Вальтеру Неристу. Как метко заметил один американский ученый, "окна его лаборатории , выходящие в сторону Патентного ведомства, всегда были закрыты" (38,93).
Чем дальше от непосредственных практических задач стояли результаты научной деятельности, тем впоследствии они имели большее значение для инженерии. Фотоэлектрический эффект, который наблюдал и описал Г. Герц во время своих опытов с искрами, приобрел позднее громадное практическое значение, а его работы с катодными лучами явились шагом к открытию и использованию атомной энергии. Но ученые того времени проводили свои исследования без постановки перед собой практических задач. В этом отношении характерно свидетельство К.А.Тимирязева об исследованиях М.Фарадея. Он пишет: "Начало той власти над электричеством, которая так характеризует современную жизнь, можно проследить до той тесной, плохо освещенной лаборатории в Британском институте, где работал Фарадей, имея ввиду только одно - расширение знаний" (39,344) .
Некоторые исследователи истории науки и культуры при характеристике возникших в то время резких границ между научной и инженерной деятельностью с известной долей правды говорят о двух линиях в функционировании культуры того времени - "линии Эдисона" и "линии Фарадея", линиях научных открытий и инженерных изобретений. Безусловно, и тогда были деятели, творчество которых не вмещалось в эту дилемму - Бертолле, Д.И.Менделеев и др. Но это было скорее исключение из общего правила. На практике продолжало преобладать традиционное мнение, что инженерная деятельность, запятнанная интересами практической выгоды является не благородной деятельностью в отличие от благородной научной деятельности, стремящейся уловить светлый луч истины. Научные исследования и инженерная деятельность все более обособляются друг от друга. Ученые в лучшем случае давали в теоретической форме ответы на выдвигаемые инженерной практикой вопросы, не участвуя в их практической реализации. Подобные взгляды существовали даже в начале 20 столетия. Р.Грегори писал в это время: "Применение в промышленности научных данных обычно не входит в круг заданий ученого; инженер или техник, обладающий практической смекалкой, - лучше могу справиться с задачей приспособления научного принципа к постройке двигателя, инструмента или приборов" (40,134).
Отсутствие на промышленных предприятиях опорных баз для ученых, резкое отличие условий научного эксперимента в институтских лаборатория от цеховых условий протекания технологического процесса, различие в технической оснащенности научной и инженерной деятельности, наличие большой доли немеханизированного труда, предубежденность общественного мнения как отражение в массовом сознании противоположности между физическим и умственным трудом и многие другие факторы затрудняли установление связей между научной и инженерной деятельностью.
Конечно техника и технология крупного машинного производства создавались с применением научных знаний, что продолжало стимулировать дальнейшее развитие технических наук. Именно в это время формируется кинематика механизмов, теория трения, теория зубчатых сцеплений,выходят технические учебники. А.Н.Боголюбов пишет, что "наука о машинах, бывшая до того времени, в основном, наукой описательной, начинает пользоваться аналитическими, графическими и экспериментальными методами исследования" (41, 269) .
Все это так. Но верно и мнение Дж.Бернала, что само функционирование техники, производственные процессы как таковые имели весьма малое отношение к науке и никаких серьезных попыток к их научному изучению в то время не предпринималось. Качественные изменения во взаимоотношениях между научной и инженерной деятельностью наступают по мере вызревания современной научно-технической революции, которая и логически и хронологически соединила научный и технический прогресс и изменила сам характер научной и инженерной деятельности.
Труд ученого из уникального превратился в массовый. Научная деятельность в прошлом носившая в основном индивидуальный характер теперь все более и более осуществляется большими коллективами ученых и тем самым приобретает коллективный характер. Пропорционально усилению социальной значимости научной деятельности усиливается ее социальная обусловленность. В итоге развитие и функционирование научной деятельности все менее определяется их внутренней логикой и все более социальным заказом. "Впервые в истории, -пишет Дж.Бернал, - наука и ученые принимают непосредственное и открытое участие в серьезных экономических, промышленных и военных событиях своего времени" (37, 383). То, что в конце прошлого века было исключением, ныне стало правилом. Взаимодействие между научной и инженерной деятельностью стало радикально отличным от того, что было раньше. Оно осуществляется в больших масштабах, значительно оперативнее и приобретает совершенно сознательный характер. По словам Дж.Бернала наука "стала совершенно сознательно и непосредственно тем, чем, чем давно уже являлась бессознательно и от случая к случаю, а именно - существенной частью производства" (37, 392). Идеал "чистого" ученого, не запятнанного практическими интересами и только созерцающего свет истины, ушел в прошлое. Современный ученый полноправный член своего общества, живет его интересами, идеалами, ценностями, отвечает на социальные запросы, задумывается о судьбе своих открытий, понимая, что они могут быть использованы как на благо, так и на вред обществу.
Поскольку экспериментально достигнутые в рамках науки знания нельзя рассматривать как алгоритм практического действия, ученые не только стремятся получить новое знание, но и разработать технологию его практического, в том числе и технического, использования. Научное творчества все больше проявляется в материализации, использовании научных знаний.
Вместе с тем, в ходе научно-технической революции произошли изменения в характере инженерной деятельности. Причем эти изменения столь существенны, что само понятие инженерной деятельности не вмещается в рамки его традиционного понимания. Ныне деятельность инженера включает в себя не только его работу в сфере производственной техники, направленной на ее создание и использование, Это вид преимущественно духовной деятельности, отличающейся логической сложностью и насыщенностью элементами творчества.
Научно-техническая революция стимулирует формирование новых инженерных специальностей: инженера- наладчика, инженера -бионика, инженера -дизайнера и др. В инженерной деятельности происходят сложные и противоречивые процессы интеграции и дифференциации. С одной стороны, стираются грани между многими инженерными специальностями, происходит их интеграция: инженер-физик объединяет специальности инженера-механика, инженера-электрика, инженера-оптика. С другой - происходит дифференциация инженерных специальностей, в качестве самостоятельных инженерных специальностей выделяются отдельные виды инженерной деятельности. Виды инженерной деятельности определяются ее местом и ролью в конкретной системе кооперированной трудовой деятельности, а само разнообразие инженерной деятельности в рамках одной профессии, специальности, квалификации диктуется проявлением закона перемены труда. Сейчас четко выделены исследовательская, проектная, конструкторская и технологическая инженерная деятельность. Соответственно различаются инженеры-исследователи, инженеры-конструкторы, инженеры-проектировщики и инженеры-технологи.
В силу того, что научные исследования, их методы, ход и эффективность ныне в большой степени определяются их технической оснащенностью , в сфере науки работают инженеры-исследователи, без участия которых подчас невозможны те эксперименты, которые проводятся в современной науке. На грани научной и инженерной деятельности сформировалась генетическая инженерия, ставящая своей задачей искусственное создание генов, что приводит к получению новых сортов растений и видов животных. Здесь руками инженеров-исследователей проводятся эксперименты по генетическому манипулированию на уровне клетки, например, их гибридизация.
Инженеры-исследователи работают не только в научной, но и в производственной сфере. В этом случае предметом их внимания становится содержание технического объекта. Они стремятся найти закон или оптимальный способ взаимодействия сил природы с целью из использования в процессе создания технического объекта. К примеру, инженер-исследователь исходя из функционального назначения данного технического устройства и отвлекаясь от его конструкторских характеристик создает схему этого устройства обращая внимание на содержание, принцип его действия и отвечая на вопрос: как и почему будет работать данный технический объект?
Что касается форм технического объекта, то они является результатом деятельности инженера-кннструктора. Технический объект (артефакт) может выполнять свое функциональное назначение обладая определенной формой, учитывающей не только природные законы его функционирования, но и социально-технические требования, нормы, правила. К таким требованиям относятся габаритные размеры, вес, стандартные входы и выходы, энергетические характеристики, условия работы, правила безопасности и т.д. Эти требования в совокупности с принципом действия артефакта определяют его форму, конструкцию. Абстрагируясь от законов функционирования артефакта уже найденных инженером-исследователем,инженер-конструктор основное внимание уделяет конструкции артефакта. В его задачу входит поиск оптимального сочетания конструктивных элементов технического устройства с учетом воздействия на него факторов окружающей среды. Инженер-конструктор отвечает на вопрос: каким должна быть форма технического объекта?
Деятельность инженера-проектировщика направлена главным образом на связи отдельных элементов технических систем, а не на сами эти элементы. В качестве элементов здесь выступают конструктивно оформленные, законченные и уже готовые технические объекты, способные самостоятельно выполнять отдельные функции. К примеру, при проектировании систем управления такими элементами являются не разрозненные детали, а отдельные приборы способные воспринять информацию и преобразовать ее в форму, удобную для передачи по линии связи в центр управления. Инженер-проектировщик абстрагируется от принципа действия элементов проектируемой системы, ограничиваясь лишь ее входными и выходными параметрами и конструктивными характеристиками. Он отвечает на вопрос: из чего состоит и как работает техническая система в целом?
Рабочий чертеж или рабочий проект являются последней стадией знаковой формы артефакта. Для перехода к практической реализации проекта необходимо ответить на вопрос: как изготовить технический объект? Эту задачу решает инженер-технолог. Предметом его деятельности является способ изготовления технического объекта. В функции инженера-технолога входят проектирование технологических процессов, выбор технологического оборудования, рациональная организация взаимодействия людей и техники в процессе производства, повышение эффективности использования техники и т.п. "Главная задача инженера-технолога состоит в нахождении способа изготовления надежного и эффективного в эксплуатации технического объекта с минимальными затратами времени, труда и материалов, - пишетЕ.А.Шаповалов. - Инженер-технолог аккумулирует результаты деятельности всех других инженеров. Его деятельность непосредственно определяет экономические показатели производства" (23,51). Инженерам-технологам принадлежит ведущее место не только в структуре инженерной профессии, но и в производстве, использовании и воспроизводстве технического базиса общества. Именно они профессионально развивают технологический способ производства. Профессия инженера-технолога - это профессия инженера широкого профиля, поскольку ему принадлежат функции проектировщика, производственника и эксплуатационника. Это уже дифференциация инженерно-технологической деятельности.
Подобная дифференциация присуща и другим видам инженерной деятельности. Так, в составе инженеров-конструкторов можно выделить инженеров-разработчиков, обеспечивающих стыковку фундаментальных научных исследований с промышленностью, инженеров-проектировщиков, воплощающих научные исследования при разработке в рабочие чертежи и инженеров-дизайнеров, разрабатывающих внешний вид машин.
Научно-техническая революция настолько изменяет содержание и характер научной и инженерной деятельности, что это оказывает существенное влияние на их взаимоотношения. Между научной и инженерной деятельностью устанавливается органическая взаимосвязь, ликвидируя те четкие границы которые были до этого между ними . Границы между научными и инженерными расчетами, различия между инженерными установками научных лабораторий институтов и промышленным оборудованием многих предприятий все более и более стираются, становятся весьма динамичными.Теперь уже научная и инженерная деятельность не могут эффективно развиваться друг без друга. Ныне существует единый процесс познания и использования объективных законов природы, в котором научные открытия и технические изобретения являются определенными этапами творчески-преобразующей деятельности.
Чем ближе техническая идея к своей материальной реализации тем большую значимость приобретает инженерная деятельность. Именно на последней ступени движения науки к производству - на стадии разработки отчетливо проявляется сращивание познавательной деятельности ученых и преобразовательной деятельности инженеров. Поэтому инженерное использование знаний представляет собой неотъемлемое звено цикла научно-исследовательского процесса. Инженер превращается в человека, который занимается наукой, осмысливает ее достижения, имея ввиду возможности их практического применения, использует науку для целесообразного преобразования действительности.
Иногда инженер идет впереди ученого, опережает его. В этом случае он стимулирует научную деятельность, творчество ученого, направляет его мысль, добывает новое знание. Поэтому следует признать устаревшим взгляд об"иллюзии познавательной сущности инженерной деятельности", о том, что "в процессе инженерной деятельности, как правило, не вырабатывается новое научное знание", что "в отличие от научной деятельности, продуцирующей новое объективно-истинное знание, инженерная деятельность, конкретизирует существующие эмпирическое и научное знание, превращая его в идеальный образ технического объекта, предназначенный для последующей его материализации" (41,26).
В действительности одно не исключает другого. В эпоху научно-технической революции связи научного и технического творчества настолько усиливаются, что иногда их трудно отделить друг от друга. Воплощая научные идеи, открытия и догадки, техническое творчество может стать специфической формой познания. В процессе технического творчества нередко раскрываются новые свойства и закономерности природы. Применение ЭВМ, автоматизация инженерного труда способствует формированию нового типа инженерной деятельности, приближающейся к научно-исследовательскому труду.
Сращивание инженерной и научной деятельности приводит не только к "индустриализации науки", но и к "онаучиванию индустрии". Активно вторгаясь в сферу производства, ученые трудятся в заводских лабораториях, конструкторских бюро, отраслевых и заводских научно-исследовательских институтах и на других опорных базах науки. Если инженеры подчас решают научные задачи, то ученые - непосредственно производственные. Они доводят опытный образец до серийного производства, отлаживают технологические процессы, направляют творческую мысль рационализаторов и изобретателей, содействуют повышению научно-технического образования работников производства, вовлекают инженеров, техников и рабочих в разработку научных проблем.
Взаимосвязи научной и инженерной деятельности не исключают их специфики и нисколько не означают отождествление этих видов деятельности. Необходимо проводить различие между конкретными задачами производства и абстрактными задачами формирования научных понятий и построения теорий.То, что в науке проходит через идеализацию, в инженерии реализуется через моделирование. Инженерное творчество, в основном, связано с изобретением, научное творчество - с открытием. Конечно и инженерные и научные задачи возникают в процессе определенной деятельности человека. Но это два различных вида деятельности.
Основная функция научного творчества - производство нового знания и разработка способов его практического использования. Инженер же в основном занят только использованием научных и производственных знаний для создания и функционирования технических объектов и технологии. Таким образом,основные конечные результаты научной и инженерной деятельности несмотря на их сегодняшнюю органическую взаимосвязь и взаимообусловленность различны. В науке они выступают в идеальной форме, в инженерии - в материальной.
Различна и направленность движения мысли ученого и инженера в процессе их профессиональной деятельности. Если ученый идет от анализа объективной реальности к формированию научных понятий , законов и теорий, то инженер - от построенной на основе научных знаний идеальной модели к ее материальному воплощению. Более того, если ученый имеет возможность аналитически изучать технические средства, то инженер должен иметь синтетический склад мышления, видеть многообразный объект своей деятельности целиком, во всех его связях с другими факторами - экономическими, организационными, эргономическими,экологическими и т.д. Многогранное восприятие объекта требует от инженера комплекса самых разнообразных научных и практических знаний.
Активность субъекта инженерной деятельности при пользовании этим комплексом знаний выражается главным образом в практической, материально-предметной деятельности на основе этих знаний. Активность субъекта научной деятельности выражается в абстрактно-теоретической форме, основанной на практике.
Примат практики над теорией обеспечивает превосходство в области практики ( на основе теории ) перед творчеством в сфере "чистого" академического знания. В отличие от ученого, имеющего дело с естественной природой, инженерная деятельность протекает в лоне искусственно созданной среды, второй форме объективной реальности.
Следует учесть еще одно важное различие между научное и инженерной деятельностью. Процесс научного исследования может протекает независимо от утилитарных целей. Более того, длительное время те или иные научные знания могут не иметь никакого практического значения. Ученые приходят к практике потом, после окончания исследования. Формы практики разнообразны и не сводятся к производственной деятельности, хотя последняя является ее главнейшей формой. Поэтому существуют научные знания, которые вообще не реализуются в технике.
Совсем другой характер имеет инженерная деятельность. Она решает конкретные практические задачи и сквозь их призму просматривает весь фронт своей деятельности. Инженер лишен возможности в ходе своего творчества отвлекаться от определенных социально-экономических и других практических вопросов. Поэтому социальная ответственность инженерной деятельности гораздо большая, чем научной.
Безусловно, в основе различия научной и инженерной деятельности лежат различия в научном и производственном процессах. В отличие от постоянно изменяемых научных представлений, производственный процесс строго детерминирован изготовлением определенных продуктов. В отличие от науки, производство всегда интересует непосредственный экономический эффект. В отличие от незавершенности процесса научного исследования , производственный процесс всегда имеет завершенный вид.
Таким образом, взаимоотношение между научной и инженерной деятельностью в различные периоды научно-технического прогресса было не одинаковым. Перешедшая к использованию научных данных техническая деятельность в самом начале научно-технического прогресса породила инженерную деятельность. Связь научной и инженерной деятельности на опреленном этапе их развития в силу общественного разделения труда была утеряна. В условиях современности эта связь восстановлена.


















Литература.
1. Философия техники в ФРГ. М., 1989.
2. Кант И. К вечному миру"// Соч. в 6-и томах, т. 5. М., 1966.
3. Цит по: Смирнова Г.Е. Критика буржуазной философии техники. Л.,1976.
4.Цит по: Вернадский В.И. Труды по всеобщей истории науки. М.,1988.
5.Ясперс К. Смысл и предназначение истории. М., 1991.
6. Леонтьев А.Н. Проблемы развития психики. Изд. МГУ. 1981.
7. Диалектика и теория творчества. Изд. МГУ, 1987.
8. Чешев В.В. Техническое знание как объект методологического анализа. Томск, 1961.
9. Деятельность: теория, методология, проблемы. М.,1990.
10. Человек в системе наук. М.,1989.
11. Степин В.С., Горохов В.Г., Розов М.А. Философия науки и техники. М.,1995.
12. Чангли И.И.Труд. М., 1973.
13. Овчинников В.Ф. Структура человеческой деятельности// Ежегодник ФО СССР. М.,1984.
14. Феликс Р. Патури. Зодчие 21 века.Смелые проекты ученых, изобретателей и инженеров. М., 1983.
15. Гончаренко Н.В. Гений в искусстве и в науке. М., 1991.
16. Пуанкаре А. Наука и метод// Пуанкаре А. О науке. М., 1990.
17. Данэм Б. Гигант в цепях. М., 1984.
18. Вертгеймер М. Продуктивное мышление. М., 1987.
19. Копнин П.В. Диалектика. логика. наука. М., 1973.
20. Ильенков Э.В. Философия и культура. М., 1991.
21. Ярошевский Т. Размышления о практике. М., 1976.
22. Горохов В.Т. Знать, чтобы делать.М., 1987.
23. Шаповалов Е.А. Общество и инженер. Л., 1984.
24. Плутарх . Сравнительные жизнеописания, т.1. М., 1981.
25. Философия техники// Вопросы философии, 1993, № 10.
26. Поппер К. Открытое общество и его враги, т. 1. М., 1992.
27. Новая технократическая волна на Западе. М., 1986., 1973.
28. Поппер К. Открытое общество и его враги, т.2. М., 1992.
29. Копнин П.В. Диалектика как логика и телрия познания. М.,1973.
30. Белозерцев В.И. Техническое творчество. Ульяновск, 1975.
31. Положение об открытиях, изобретениях и рационализаторских предложениях. М., 1981.
32. Кант И. Антропология с прагматической точки зрения// Кант И. Соч. в :-и томах, т.6. М., 1966.
33.История техники, т. 1, часть 1. М., 1936.
34. Энгельс Ф. Диалектика природы// Маркс К. и Энгельс Ф. Соч. т. 20.
35. Аристотель Метафизика// Аристотель. Соч. в 4-х томах, т. 1. М., 1976.
36. Эстетика Ренессанса, т. 2. М., 1981.
37. Бернал Дж. Наука в истории общества. М., 1956.
38. Гернек Ф. Пионеры атомного века. М., 1974.
39. Тимирязев К.А. Наука и демократия. М., 1957.
40. Грегори Р.А. Открытия, цели и значение науки. Пт.. 1923.
41. Боголюбов А.Н. Теория механизмов и машин в историческом развитии ее идей. М., 1976.
42. Карлов Н. Компьютер не заменит голову инженера// Известия, 23.04.93.













Глава 2.
Техника как средство деятельности.
Когда ведут речь о технике, то прежде всего имеют в виду ручные орудия труда, машины, автоматы, компьютеры и пр. , т.е. определенные созданные людьми материальные средства своей деятельности. Утверждение. что "техника всегда поставляет лишь средства для достижения чего-либо" (1,439) широко распространено.Понимание техники в таком плане является инструментальным аспектом анализа техники, к которому мы в дальнейшем и перейдем.
Но прежде чем реализовать этот аспект философского анализа техники совершим экскурс в историю техники опираясь на знание которой можно сформулировать обоснованные философские суждения о сущности техники как системе средств деятельности людей, ее структуре и выполняемых в процессе человеческой практики функциях, закономерностях развития такого сложного феномена каким является техника.


1.От каменных орудий до компьютера.
Около 2 млн. лет назад начался длительный процесс становления, формирования человека, процесс выделения человека из мира животных. В основе этого процесса лежал труд как специфическое отношение существа к внешнему миру. Труд начинается с изготовления орудий труда. Проследить появление "самого первого" искусственного орудия также невозможно, как и появление "самого первого" человека. Но археологические находки свидетельствуют, что первые орудия были каменные, посредством которых затем обрабатывались более податливые природные материалы - дерево, кость, рог и др. Орудия труда зарождались в результате совместных действий предчеловека по собиранию растений, охоте на разнообразных животных, обработке добычи, приготовлению ее к употреблению, обороне. Неизмеримо долгое время предчеловек подбирал палки и камень с земли когда в них возникала нужда, а по использованию их тут же бросал. Но затем должен был наступить период, на протяжении которого австралопитеки (или их предки) все яснее и яснее осознавали полезность того или иного предмета и уже не отбрасывали его сразу, а какое-то время спустя стали носить его с собой почти постоянно. Мало-помалу приходит осознание, что камнем можно ушибить или убить, если швырнуть его сильно и метко. А нанести удар дубинкой , пожалуй, и того проще. Обилие дерева, которое мягче камня и легче поддается обработке ( пока не было достигнуто и усовершенствовано умение изготовлять каменные орудия), позволяет предположить, что древнейшие гоминиды широко использовали дерево, а также длинные кости крупных животных. Но величайшим достижением нашего предка как зачинателя материальной культуры были обработанные камни. Многие тысячелетия первобытные люди использовали лишь очень грубые орудия из отщепов и несколько сходных между собой типов ручных рубил. Однако в течение этого огромного периода, хотя и медленными темпами, приемы создания орудий совершенствовались, увеличивалась эффективность самих орудий и таким образом возрастала вооруженность человека в борьбе с природой. Хотя и медленно, но происходило количественное возрастание актов и операций при изготовлении каменных орудий.
Господство камня в производстве орудий труда не случайно. В нем сочетается ряд качеств , которые использовал первобытный человек в процессе своей деятельности: кремень обладает твердостью, способен давать режущие края, может расслаиваться на тонкие пластины и , кроме того, широко распространен в природе.
В период перехода от первобытного стада к родовому строю происходит освоение огня и применение наряду с ручным рубилом остроконечника и скребка, получивших в дальнейшем широкое распространение.
Вначале человек познакомился с так называемым "диким" огнем, т.е. полученным в результате естественных явлений природы ( действие вулканов, удар молнии в дерево, трение ветвей дерева во время ветра и т.д.). Приятные и полезные свойства огня: его блеск, свет, способность согревать и изменять к лучшему растительную и животную пищу заставляли первобытных людей заботиться о том, чтобы поддерживать его посредством непрерывного добавления горючего материала. "Дикий" огонь был превращен в "домашний". Прошло много времени пока человек перешел от сохранения огня к его добыванию, причем и после этого люди стремились поддерживать огонь, так как способы его добывания - выскабливание, высверливание, выпиливание, высекание были весьма трудоемкими.
В своей практической деятельности человек опытным путем пришел к убеждению, что в одно и то же время можно получить лучшие результаты, если вместо одного универсального орудия применять целый ряд специализированных. Таким первым набором специальных орудий, при помощи которых осуществлялись различные действия процесса резания, явились остроконечник, скребло, скребок и проколка. Использование специальных орудий привело к созданию первых технологических процессов, т.е. к возникновению первой системы связанных между собой этапов работы. Дальнейшее совершенствование техники выразилось в применении все большего количества простых специализированных орудий труда. Изобретаются лук и стрела, появляются более сложные орудия труда. Возникает комплекс каменных, костяных и деревянных орудий с преобладанием каменных. Зарождается постоянство в изготовлении орудий, его определенная осознанность.
Воздействуя на внешнюю природу, изменяя ее человек в то же время изменяет свою собственную природу. В процессе труда лапа обезьяны постепенно превратилась в руку человека. Рука человека - наиболее совершенный в техническом отношении орган, имеющий 27 степеней свободы, т.е. способный принимать 27 разных положений. В настоящее время нет ни одной технической системы, которая имела бы подобное количество степеней свободы. Взяв в руки то или иное орудие, человек значительно "усовершенствовал" руку, сделав ее длиннее, тверже, сильнее. Не случайно Аристотель назвал руку орудием всех орудий.
Но человек развивался не только физически. На основе труда, который с самого начала формировался как совместная деятельность людей т.е. имел общественный характер, человек познавая природу совершенствовал свои отражательные умственные способности. Трудовые действия многократно отражаясь в мозгу первобытного человека привели к формированию определенных правил не только практического действия , но и мышления. К примеру, первобытный человек миллионы раз разбивал орехи, отделяя кожуру от твердой части и выделяя в конце концов сьедобную мякоть. В дальнейшем он эти физические действия мог представить в своем сознании в виде правил логического анализа. Познавая природные предметы и явления первобытный человек формировал сознательное отношение к окружающей реальности. Формировалось сознательное отношение к природе, развивалось сознание человека и становилось человеческое общество, прошедшее в период этого своего становления три крупных общественных разделений труда. "Начавшееся вместе с разделением труда господство очеловечившихся обезьян над природой расширяло с каждым шагом кругозор становившегося человека,- писал историк техники Б.Л.Богаевский. - В предметах природы он открывал новые, до того неизвестные свойства. С другой стороны, развитие труда по необходимости способствовало более тесному сплочению членов первобытного стада, такак благодаря трудовой деятельности стали более часты случаи взаимной поддержки" (2,5-6). Техника берет свое начало не в деятельности отдельных людей, как таковых, а в совместном труде многих, в котором отдельные индивиды допол няют друг друга.
Переход от грубых каменных орудий к луку и стрелам обеспечило изменение образа жизни от охотничьего к приручению животных и первобытному скотоводству, которое выдвинуло на первое место мужчину, поставило его во главе хозяйственной деятельности. Большая потребность в камне приводит к необходимости вначале его собирать, отбирать и откалывать, а затем к преднамеренной добыче, т.е. к зарождению примитивной формы горного дела. В результате значительного расхода камня, особенно кремня, естественно, поверхностные запасы его начали истощаться. Это привело к тому, что для изготовления орудий стали применять другие виды горных пород (гранит, нефрит, порфир и др.) и к преднамеренной добычи камня из недр земли и , таким образом, к развитию горного дела. В связи с ростом потребности в орудиях труда стали возникать специальные мастерские, где работали наиболее искусные мастера по добыче каменного сырья и изготовлению из него необходимых орудий. Это создавало дальнейшее общественное разделение труда. Но решающую роль в очередном разделении труда - отделении ремесла от земледелия - сыграл переход от камня к металлу.
Для приготовления орудий и оружия человек прежде всего стал употреблять медь, хотя золото он, видимо, знал еще раньше. Как полагают археологи в поисках каменного сырья люди нашли самородную медь, которая своей красотой, мягкостью привлекала внимание. Впоследствии люди переходят к выплавке меди, зарождается металлургия, изобретается бронза - искусственный сплав из меди и олова. Однако бронза являлась слишком редким и дорогим материалом, поэтому основные орудия труда были по-прежнему каменными и деревянными. Их могло вытеснить только создание и изготовление железных орудий. Одним из величайших изобретений человечества был сыродутный процесс получения железа. Стремление получить более прочные орудия труда и оружия привело к изобретению производства стали. Являясь в отличие от меди и бронзы общедоступным и дешевым металлом, железо очень скоро проникло во все области производства, быта и военного дела. Оно быстро произвело переворот во всех областях производства а с развитием гончарного дела окончательно определило отделение ремесла от земледелия. Жизнь людей все меньше стала зависеть от естественных богатств средств существования непосредственно данных природой, и все больше от естественных богатств средств труда, преобразованного людьми природного вещества.
Использование железных орудий многократно усилило эффективность труда, увеличило количество прибавочного продукта. Необходимость изъятия прибавочного продукта из ведения отдельных лиц, его концентрации в руках немногих для использования в целях обеспечения расширенного воспроизводства явилось объективной причиной появления классов. С формированием рабовладельческого общества происходи третье крупное общественное разделение труда - труд умственный отделяется от труда физического. Техника делает дальнейшие шаги в своем развитии.
С использованием железа в хозяйственной деятельности связано изобретение колеса. Без металлического инструмента трудно было изготовить колесо, перейти к колесному транспорту. Принцип вращательного движения был использован в гончарном круге и глиняная посуда нашла самое широкое применение в быту. Большое значение имело производство стекла, изготовление красителей, изразцов, развитие ткачества на основе изобретения ткацких станков. Высокого уровня достигает развитие кузнечного ремесла. В кузнецах появляются горны с ручными двойными воздуходувными мехами, наковальня, тиски, сверла, клещи,молоты, зубила. К 6 веку до нашей эры относится изобретение токарного станка, которое приписывают Феодору Самосскому. На токарном станке обрабатывали не только деревянные изделия, но и литые из бронзы сосуды, зеркала. В 5 веке до нашей эры впервые в мукомольном деле стали использовать мельницы, приводившиеся в движение вначале вручную, а затем с помощью тягловой силы животных. Появился новый строительный материал - бетон. В пашенном земледелии применялась соха.В сельском хозяйстве используются различные бороны, серпы и косы, цепи и катки. Воины Древнего Востока, Греции и Рима были вооружены луком и стрелами, копьем и мечем. Железный мечь вскоре становится основным видом оружия. Необходимость ведения как осады, так и обороны городов требовала создания осадных и оборонительных машин и механизмов - осадные башни, специальные буры для сверления крепостных стен, лестница для подъема на стены, тараны для разрушения стен, катапульты. При сооружении дорог устраивались различные мосты через пропасти и реки. Строятся все более крупные суда и маяки. В рабовладельческом обществе зарождаются отдельные отрасли естествознания - астрономия и маханика, которые обслуживались математикой. Наряду с механикой были открыты и исследованы некоторые законы физики.. Физико-математические знания античности нашли отражения в работах Герона Александрийского. В своем труде "Об искусстве изготовлять автоматы" содержится описание того, как простейшие механизмы с помощью груза и системы блоков, зубчатых колес и рычагов вызывают автоматическое движение различных фигурок, которые могли разыгрывать перед зрителями целые пьесы. Кроме развлечения, автоматы широко использовались в культовых целях. Так, пневмогидравлическое устройство позволяло "автоматически" открывать двери храма в случае если загорался жертвенный огонь и закрывать их, когда огонь потухал.
Основными итогами развития античной техники можно считать:
- окончательный переход от каменных орудий к металлическим и, в соответствии с этим, переход к возделыванию растений и земледелию как отрасли производства.
- освоение способов выплавки железа, использование литья, паяния, волочения и частично сварки.
- постепенное совершенствование обработки металлов, ткачество, производство гончарных изделий и других ремесел и вследствие этого отделение ремесла от земледелия.
- образование городов на базе развития ремесла и обмена.
- развитие строительного дела - сооружение пирамид, стен, акведуков и мостов, изобретение нового строительного материала - бетона.
- бурное развитие военной техники с широким использованием металлического оружия.
- улучшение способов передвижения на суше и воде.
- в связи с потребностями производства возникают некоторые отрасли естествознания (астрономия, математика, механика). Зарождение естественных наук положило начало отделению физического труда от умственного и возникновению противоположности между ними.
Однако несмотря на все технические достижения античности техника производства, основанная на труде рабов не заинтересованных в своем труде, развивается медленно и остается на весьма низком уровне. В течении веков общество не идет дальше применения ручных орудий и простой кооперации рабов. Основной двигательной силой являлись физическая сила людей и животных. Некоторые технические изобретения используются лишь в военном деле и строительстве . Дальнейший технический прогресс протекал уже в рамках феодального общества.
Орудия труда работника феодального общества были "карликовыми инструментами", зависящими от его мускульной силы и виртуозности рук. Отсюда и произошло название ремесла: "рукомесло". Но производительность труда зависела и от совершенства орудий труда. Это привело к разработке ремесленниками целого комплекса орудий обеспечивающего выполнение всех производственных операций.
Преобладающую роль играло сельское хозяйство. Совершенствовались способы хлебопашества, расширяется ассортимент возделываемых культур. Но сельскохозяйственный инвентарь был довольно примитивный. Орудиями труда служили соха (правда, с железным лемехом), борона, мотыга, серп, коса, грабли, вилы, цепь, лопата, топор. Несколько позже стали применяться плуг легкого типа и тяжелый колесный плуг.
Начиная с 11 века стали создаваться крупные города в Западной Европе и в Росссии. Вокруг этих городов а также вокруг замков крупных феодалов и монастырей стали поселяться ремесленники, которые позже объединялись в замкнутые коопорации - ремесленные цеха со строгой регламентацией производственного процесса. Цеховая форма производства укрепляла экономическое и правовое положение ремесленников, создавала условия для совершенствования средств производства, накапливала производственый опыт, способствовала развитию общественного разделения труда.
Этому периоду развития техники свойственно использование в механизмах колеса, шарнира, ползуна, клина, употреблявшихся в ручной технике. Широкое распространение получают коромысловые механизмы, повозки, подъемные механизмы, в которые использовались блоки и вороты. Каменное строительство требовало при сооружении крепостных зданий подъемных мостов. Здесь применяли системы блоков и воротов. Повсеместно были распространены мощные пружинные токарные станки с ножным приводом. Использовали различные сверлильные станки. Совершенствовались широко распространенные в то время ткацкие станки, что способствовало улучшению тканей. Ремесленники изготовляли многочисленные предметы домашнего обихода и утварь, механизмы и приспособления, среди которых видное место занимали механические замки, капканы, ловушки и другие устройства.
Для совершенствования орудий труда решающее значение имело улучшение плавки и обработки железа. Вначале основным способом получения железа был сыродутный процесс, при котором происходит прямое восстановление железа непосредственно из железной руды. Но крайне низкая степень извлечения железа из руды ( не больше 50 % ) и очень незначительная производительность не удовлетворяли увеличивающегося спроса на металл. Сыродутный способ стал постепенно вытесняться двухступенчатым способом получения железа: сначала получали чугун, потом, при повторной переплавке в горне, железо. Увеличение и улучшение выплавки и обработки металлов вызвали изменение техники горного дела, которое превращается в особую сферу трудовой деятельности. Ее члены занимались добычей полезных ископаемых и производством из них орудий труда, оружия, украшений и чеканкой монет.
В период феодализма в Европе стали использоваться крупные изобретения, которые сыграли большую роль в дальнейшем развитии производительных сил. К таким изобретениям относятся порох, бумага, книгопечатание, очки и компас.
Применение дымного или черного пороха в качестве метательного средства положило начало огнестрельной артиллерии, которая вызвала настоящую революцию в военном деле , оказало колоссальное влияние на металлургию и горное дело.
Книгопечатание сыграло решающую роль в развитии техники, науки, культуры. Книгопечатанию предшествовало изобретение бумаги. Книгопечатание, т.е. размножение текстов и иллюстраций путем прижимания бумаги или другого материала к покрытой краской печатной форме, пришло на смену медленному и трудоемкому процессу переписывания книг от руки. Вначале в Европе появился способ печатания с досок, на которых вырисовывались изображения и текст. В середине 15 века способ печатания с досок становится недостаточным для удовлетворения потребностей общества и на его смену приходит книгопечатание с подвижных литер.
Оптические очки появились в 13 веке в Венеции, где в то время производилось очень хорошее стекло. Массовая потребность в очках вызвала развитие стекольного дела, особено шлифовального. Изготовление и применение очков подготовило изобретение подзорной трубы и микроскопа. Очки заложили основы новой области знания - оптики.
Использование магнетизма и создание компаса позволило человеку значительно расширить масштабы путешествий как на суше, так и на воде. Первый компас в Европе представлял собой магнитную стрелку, укрепленную на пробке, которая плавала в сосуде с водой. В начале 14 века этот компас был усовершенствован и к стрелке прикрепили легкий круг, разделенный на 16 частей (румбов).
Справедливости ради отметим, что многие из важнейщих изобретений средневековой Европы значительно раньше были сделаны на Востоке. Так, еще в начале нашей эры в Китае были известны зажигательные смеси , а в начале 13 века - дымный порох. Там же Чай-Луном во 2 веке была изобретена бумага, а в 9 веке - книгопечатание из досок.
До середины 15 века прогресс техники на Западе совершался крайне медленно. Новые изобретения внедрялись с трудом. Техника того времени почти не нуждалась в систематическом изучении природы; она не оказывала значительного стимулирующего влияиня на развитие естественнонаучных представлений о природе. Зато на науку оказывало влияние религия, заставляя науку развиваться в виде алхимии, астрологии, магии, кабалистике чисел и других нанеучных представлений, которые расцветают пышным букетов во всякие переломные моменты истории в том числе и сейчас.
Одновременно на Востоке, в отличие от задушенной религиозным дурманом западноевропейской науки, народы Средней Азии и арабы сделали много важных естественнонаучных открытий и наблюдений. Здесь следует упомянуть Авиценну - философа-естествоиспытателя, врача, математика , поэта и социолога; Бируни - математика, астронома, ботаника и минеролога и многих других. Однако при всей важности открытий ученых Востока они еще не могли привести к созданию естествознания как систематической, опытной науке. Естествознание как науку переживала еще свой подготовительный период.
Во второй половине 15 века в связи с зарождением капиталистического хозяйства усилилась потребность в расширении рынков сбыта, увеличился спрос на драгоценные металлы. Это создало предпосылки для великих географических открытий. Изобретение компас, различных оптических приборов, развитие техники морского дела, а также картографии обеспечило возможность далеких морских путешествий. Открытие Христофором Колумбом Кубы, Гаити и Багамских островов и Джоном Каботом побережья Северной Америки положили начало целой серии новых географических открытий. В связи с возникновением мировой торговли и мирового рынка ремесла оказались уже не в состоянии удовлетворить возросший спрос на товары. Это ускорило переход от мелкого ремесленного производства к крупному капиталистическому. Начальная стадия этого перехода характеризуется мануфактурой внутри которой происходит разделение труда, что привело к совершенствованию, специализации и дифференциации орудий труда. Но производство в это время еще основывалось на ручной технике.
Характерной особенностью дальнейшего развития техники мануфактуры является распространение орудий труда, приводимых в действие силами природы. Основным двигателем становится водяное (гидравлическое) колесо, которое применяется во всех видах производства. Все орудия, которые раньше приводились в действие вручную или силой животных, например, ручные мельницы, насосы, мехи и т.п., начинают приводиться в движение при помощи гидравлического колеса. В зависимости от высоты напора воды различают три типа водяных колес: нижнебойные, среднебойные и наливные или верхнебойные колеса. Развитие водяного колеса и широкое применение его в производстве привело к другим изобретениям, которые в дальнейшем послужили основой для решения целого ряда важных технических задач. Так, И.Гелл сконструировал водяной двигатель, получивший название водостолбовой машины, которая в дальнейшем была значительно усовершенствована. Однако развитие производства выдвигает задачи создания более мощного двигателя, что стимулирует поиск двигателя использующего энергию пара.
Гидравлические двигатели получили наиболее широкое применение в горной промышленености для привода подъемных, водоотливных, вентиляционных установок, дробильных и транспортных механизмов. Развитие горного дела способствовали прогрессу в области металлургии. Изменилась техника доменного производства, увеличились размеры доменных печей, черная металлургия перешла к использованию кокса получаемого из каменного угля. Развивается литейное производство, т.е. изготовление фасонных изделий (отливок) путем заливки литейных форм жидким металлом или сплавом. Замечательными памятниками литейного дела того времени являются "царь-колокол", находящейся сейчас в Кремле и конная статуя Петра в Санкт-Петербурге. При производстве орудий стали отливать орудийные стволы из бронзы, а в дальнейшем из чугуна.В текстильном производстве начинает применяться самопрялка, к которой в дальнейшем был присоединен ножной педальный механизм.
В развитии техники 17-18 веков большую роль сыграли часы и мельница. В глубокой древности использовались солнечные часы, а несколько позже водяные. В 13 веке появились механические часы башенного типа с одной стрелкой, приводимые в движение грузом. В конце 15 века были изобретены пружинные переносные часы, дававшие также приблизительное показание времени. Лишь в 17 веке Х.Гюйгенс произвел полный переворот в этом деле, применив в качестве регулятора в стационарных часах маятник и в переносных - упругую спираль. Он же применил балансир и изобрел анкерный спуск.
Второй материальной основой для создания машинного производства являлись мельницы. Ветряные мельницы так же как и водяные строились еще в древнем Египте. До конца 18 века в основном знали мельницы двух типов - козловые и шатровые, которые могли вручную поворачиваться "на ветер". Позже создаются мельницы "автоматические", которые поворачиваются "на ветер" при помощи приспособлений. В механизме мельницы зародились достаточно сложные автоматические устройства. Мельница была основой, на которой конструировались все производственные машины мануфактурного периода в такой же мере, как часы были основой для создания многочисленных автоматов.
В мануфактурный период были не только созданы условия для дальнейшего перехода к машинному производству, но и сделаны отдельные попытки применения машин. Особенно быстро развиваются машины-двигатели, но спорадически начинают применятся в подготовительных и вспомогательных процессах и рабочие машины с помощью которых изменяются форма, свойства, состояния и положения предмета труда. Этот период характеризуется резким увеличением числа изобретений и усовершенствований, которые требовались для зарождающейся машинной индустрии.
Во второй половине 15 века, когда Западная Европа начала переживать эпоху Возрождения, происходит процесс формирования естествознания, чему не в малой степени способствовали Леонардо да Винчи, Николай Коперник и другие ученые. Считая практику невозможной без теории Леонардо да Винчи занимался математикой, механикой, физикой, астрономией, геологией, ботаникой, анатомией, физиологией и сделал ряд замечательных изобретений, намного обогнавших свое время (летательный аппарат, парашют, вертолет, подводная лодка, печатный станок и др.). В первый период своего развития наибольших успехов достигла механика. Распространенные на солнечную систему законы механики привели к научной революции, выразившейся в разрушении геоцентрической картины мира Птолемея и в создании в 16 веке Николаем Коперником гелиоцентрического учения. Центральное место в борьбе за новое естествознание занимает Галилео Галилей, который является основоположником механики, сформулировавшим основные кинетические понятия (скорость, ускорение), сформулировал исходный закон динамики - принцип инерции, открыл законы колебания маятника, первый выдвинул идею относительности движения и сделал ряд открытий в области астрономии. Окончательное признание гелиоцентрическая система мира получила в трудах И.Кеплера, открывшего законы движения планет. И.Ньютон, сформулировав эти законы под углом зрения общих законов движения материи, завершил период механического естествознания.
В качечстве основных итогов развития техники мануфактурного периода можно отметить следующие:
- развитие мануфактуры привело к специализации орудий труда, к их значительному усовершенствованию, вследствие чего оказалось возможным перейти от ручных орудий труда к машинам.
- доведя до высшей степени разделение труда внутри производства мануфактура упростила многие операции, которые свелись к таким простым движениям, что стала возможным замена руки рабочего машиной.
- историческая роль мануфактуры состояла в том, что она подготовила необходимые условия для перехода к машинному производству.
- в мануфактурный период появляются первые рабочие машины, которые, однако, получают спорадическое применение.
- основным двигателем мануфактур становится гидравлическое колесо.
- большое значение для развития крупной машинной индустрии имели часы, которые явились первым автоматом, созданным для производственных целей.
- дальнейшее развитие получают горное дело и металлургия. В военной технике происходят изменения в всязи с широким применением огнестрельного оружия.
- возникает естествознание как наука в форме механистического естествознания.
Исходным пунктом перехода от мануфактурного производства к машинно-фабричному было применение рабочих машин, которые явились главной частью развитой совокупности машин так как они непосредственно воздействовали на предмет труда. Рабочая машина - это совокупность тех же инструментов, которые раньше применялись рабочими в мануфактурном производстве. Но она одновременно действует большим количеством орудий.
Рабочие машины стали внедрятся прежде всего в текстильном производстве Англии. Д. Кей изобрел механический ( самолетный) челнок для выработки тканей. Д.Уайет построил модель прядильной машины, имеющей вытяжной аппарат. Д.Харгривс на самопрялке "Дженни" заменил руку прядильщика прессом в котором одновременно можно было зажать не одну, а несколько нитей. Р.Аркрайт создал ватермашину, приводимую в действие водяным колесом. С.Кромптон сконструировал станок, в котором было вначале 400, а впоследствии 900 веретен.
Увеличение размеров рабочей машины потребовало более мощного двигателя. После изобретения парового котла Д.Папеном, парового насоса Т.Севери и пароатмосферной машины Т. Ньюкомена был создан Д. Уаттом первый действующий универсальный паровой двигатель. При этом Д.Уатт решил много технических задач: он изобрел золотник, применил для выравнивания вращательного движения маховое колесо, создал несколько способов преобразования прямолинейного движения во вращательное и механический центробежный регулятор. Этот двигатель по своему техническому применению был универсальным и сравнительно мало зависящим от тех или иных условий места его работы.
Основной задачей дальнейшего технического прогресса стало техническое перевооружение промышленености, изобретение и распространение рабочих машин в машиностроении. Для превращения ручного токарного станка, который в то время был главным техническим средством при обработке металлов, в рабочую машину был необходим резцедержатель (суппорт), т.е. механизм, заменяющий руку человека при работе на станке. Постройка Г.Моделем токарно-винторезного станка со сменным ходовым винтом сделало возможным производить машины машинами. Создавался новый уклад техники, свойственный машинно-фабричному производству.
Технический переворот в машиностроении стимулировал развитие металлургии, поскольку роль металла как основного материала для изготовления машин значительно возросла. Черная металлургия переходит на новые методы производства чугуна и переделки его в железо и стимулирует дальнейшее развитие техники горного дела. Одновременно развивается техника земледелия где создаются из металла машины для обработки земли ( плуги, бороны), посева ( сеялки всех родов), уборки зерновых культур ( жатвенные машины) и обработки злаков (молотилки, веялки, сортировки).
С развитием крупной машиной индустрии важное значение приобретают транспорт и связь. Возникают и распространяются рельсовые пути, изменяются способы тяги. В Англии Д.Стифенсон сконструировал паровоз. Строятся железные дороги, в частности в России между Петербургом и Царским Селом а затем и Москвой. Француз Р.Фультон в Америке построил пароход на котором установил паровую машину. Настоящий переворот в средствах связи произвело введение электромагнитной телеграфии. Изобретается фотография (светопись), которая постепенно входит в обыденную жизнь людей.
Технический прогресс стимулирует развитие науки, которая начинает превращаться в непосредственную производительную силу. Началось изучение созданных еще на эмпирической основе технических средств, крупные научные открытия вызвали к жизни новые технические средства.
Для этого времени характерна электрическая промышленность, развивающая всю технику ускоренными темпами. Источником электрического тока становится изобретенный бельгийцем З.Граммом генератор постояннного тока. Русский физик Б.С.Якоби в 1834 году изобрел первый электродвигатель постояного тока. Дальнейший прогресс в развитии электрических машин был связан с изучением и использованием переменного тока. Были построены Г.Феррарисом и Н.Тесла двухфазные электрические машины переменного тока. Однако основой современной электротехники стали машины трехфазного переменного тока, заслуга в создании которого принадлежит русскому электромеханику М.О.Доливо-Добровольскому. Одновременно решались задачи передачи электроэнергии на большие расстояния и электрического освещения. Строительство электростанций потребовало нового мощного двигателя. Были созданы вначале паровая, а затем реактивная и активная многоступенчатая турбины.
Растущий спрос на различные машины потребовал развития машиностроения. Электродвигатель как двигатель крупной промышленности стал внедрятся в производство в 80-е годы 19 столетия. Тогда же началось постоянное усовершенствование передачи электроэнергии от двигателя к рабочим машинам. В начале 20 века стал внедряться индивидуальный электропривод, что чрезвычайно упростило конструкцию станка и сделало излишним все многочисленные громоздкие ременные передачи. Ведутся работы по использованию электроэнергии для технологических процессов, в частности был разработан способ электросварки.
Огромные перемены происходят в металлургии- изменяются конструкции печей, усовершенствуется доменное оборудование, усиливаются воздуходувные средства. Г.Бессемером был открыт новый способ переделки чугуна в ковкое железо и сталь, получивший название по фамилии своего изобретателя. Мартен построил регенеративную пламенную печь. Наконец, английский металлург С.Томас полностью разрешил вопрос о переделки в сталь чугунов осуществив удаление фосфора из чугуна в шлак.
Большое развитие получает химическая технология. Развивается производство искусственных красителей, новый способ получения серной кислоты, способ получения поваренной соли.Бурно развивается нефтеперерабатывающая промышленность. Появился аппарат непрерывной перегонки нефти, был создан так называемый крекинг-процесс, т.е.процесс глубокой химической переработки нефти.
Таким образом, с 70-х годов 19 века до первой мировой войны в промышленности развитых стран была создана система машин, основанная на использовании электрического двигателя. Эта крупная машинная индустрия предъявила большие требования к строительству фабрично- заводских, банковских зданий, рынков, вокзалов, гостиниц. Хотя главным материалом оставался обоженный кирпич, в строительстве все чаще используется цемент, бетон, железобетон и стекло. Стимулирующее воздействие произвела машинная индустрия и на развитие транспорта. Выросла протяженность железных дорог, повлекшая за собой тунелестроение и мостостроение, большую роль начинает играть водный, особенно океанский транспорт где господствующее место занимает паровой флот.
Конец 19 века ознаменовался зарождением совершенно новых отраслей техники, которые получили развитие в последующий период. И.Райсом был изобретен первый телефонный аппарат впоследствии усовершенствоварнный Т.Эдисоном и Д.Юзом. Последний изобрел микрофон. Т.Эдисоном был предложен аппарат для записи и воспроизведения звука, названный им фонографом. Братья Люмьеры разработали конструкцию аппарата для съемки движущихся объектов, назвав его кинематографом. Одним из важнейших достижений науки и техники явилось изобретение русским ученым А.С.Поповым радио. А.Ф.Можайскому и затем братьям Райт принадлежит честь создания самолета - аппарата тяжелее воздуха. В авиационной и автомобильной промышленности получили широкое распространение двигатели внутреннего сгорания. А.Боде Рош предложил принцип четырехтактного двигателя, который был использован Г.Даймлером при конструировании им бензинового двигателя. Почти одновремено Р.Дизелем был создан двигатель внутреннего сгорания на тяжелом топливе - нефти. Все эти новые изобретения стали быстро использоваться на практике, что в дальнейшем привело к коренному изменению производства, сферы услуг и быта.
Логика развития науки и практики обусловили тот гигантский переворот в науке конца 19 - начала 20 веков, который по праву получил название революции в естествознании. Начало этой революции положил немецкий физик В.К Рентген, открывший Х-лучи названные впоследствии его именем как "рентгеновские". Английский физик Дж.Стоней дал первое количественное определение заряда атома, назвав этот заряд "электроном". Руский физикП.Н.Лебедев исследовал давление света. Эти исследования положили начало разработки электронной теории. В дальнейшем благодаря работам целой плеяды выдающтхс физиков были созданы планетарная а затем и динамическая модель атома (Дж.Томсон, Н.Бор), квантовая механика ( М.Планк), теория относительности (А.Эйнштейн), которые в своей совокупности сформировали новую естественно-научную картину мира и явились прелюдией к бурному научно-техническому прогрессу 20 века.
В первой половине 20 века шло исключительно быстрое развитие электромашиностроения, автомобилестроения, тракторостроения, приборостроения, авиации, двигателей внутреннего сгорания и других отраслей машиностроения. Этот процесс обусловил глубокие изменения в производстве современных машин. Характерным в этом отношении является переход к массовому специализированному производству однотипной стандартной продукции и организация поточного производства.Высшей стадией развития поточного производства является непрерывность всего технологического процесса, основанного на полной автоматизации.
Процесс формирования автоматической техники, т.е. техники действующей без непосредственного участия человека в технологическом процессе, прошел длительный исторический путь своего развития. В так называемый домеханический период эволюции автоматизации первые автоматы возникли еще в глубокой древности. Ими были ловушки, изобретенные охотниками на заре человеческой истории. Позже, во времена античности были автоматы для продажи священной воды и вина, культовые автоматы. Устройствами, обеспечивающими их взаимодействие, были реечная, червячная и винтовая передачи, программирующие валики и кулачки. В механический период эволюции автоматизации последняя получила воплощение в машиной технике и механизмах, регулирующих их действие. Были созданы мельница и различные мельничные механизмы, механические счетные машины, автоматический ткацкий станок. С конструированием индивидуального электропривода начинается электрический период автоматизации. Основу этому периоду положило формирование поточного производства.
Современное поточное производство было впервые организовано на автомобильных заводах в США Генри Фордом. Затем массовое поточное производство получило распространение для производства отдельных деталей станков и в подшипниковой промышленности, где в одном технологическом цикле были задействованы полуавтоматы и автоматы. Одновременно узко специализированные станки целевого назначения постепенно потеснялись агрегатными станками которые позволяли выполнять на одном станке различные виды обработки изделий одновременно несколькими инструментами.
Агрегатные станки приобрели особое значение в связи с появлением и развитием автоматических станочных линий. Впервые такая линия была установлена в Англии в 1923-1924 годах для механической обработки блоков цилиндров и других крупных деталей. В России автоматическая станочная линия была создана в 1939-1940 годах по инициативе рабочего Волгоградского тракторного завода И.П.Иночкина. Она состояла из 5 станков соединенных конвейерами и предназначалась для обработки роликовых втулок гусеничных тракторов. Во время второй мировой войны, и особенно в послевоенные годы автоматические станочные линии агрегатных станков получили большое распространение на машиностроительных заводах. Успехи науки и техники позволили перейти от отдельных поточных линий к автоматическим цехам. Автоматические станочные линии соединяются друг с другом с помощью автоматических конвейеров, в результате чего создаются линии длинной в 500 м. и более. В 1949 году в России впервые в мире был построен автоматический завод по производству поршней. Его особенностью является то, что здесь автоматизированы не только механическая обработка, но и другие технологические процессы. Тем самым было положено начало комплексной автоматизации в машиностроении.
Прослеживая историю электрического периода эволюции автоматизации и тенденции его развития можно выделить три ступени этого периода. На начальной или частичной ступени автоматизации создаются отдельные станки с программным управлением, отдельные автоматические линии с контрольно-измерительными приборами. Здесь рабочий осуществляет общий контроль за ходом операций, ремонт и наладку техники.Только в этом последнем отношении он включен в технологический процесс, получая относительную свободу действий. При развитой или комплексной автоматизации, которая реализуется в форме заводов-автоматов, телеуправляемых гидростанций, человек не участвует непосредственно в процессе производства. Контроль и наладка осуществляется автоматически, т.е. без посредства человека. Наконец завершающая (полная) автоматизация представляет собой систему, обеспечивающую автоматическое функционирование всех без исключения участников производства - от проектирования ( САПР- система автоматического проектирования) до выдачи готовой продукции. Такая автоматизация равнозначна по сути дела автоматическому производству в масштабах всего общества, что является делом сравнительно отдаленного будущего. Здесь из непосредственного производственного процесса устраняется не только труд рабочих, но и труд техников а также значительная часть инженерного труда.
Автоматизация заменила трехзвенную систему машин ( двигатель - передаточный механизм - рабочая машина) четырехзвенной (появилось звено управления) и тем самым изменила место человека в производственном процессе. Человек все в меньшей степени воздействует на предмет труда, за ним закрепляются творческие операции, тогда как за техническими системами - стереотипные. Способности человека творчески управлять производством начинают играть главную роль.
В ходе технического прогресса появилась потребность воспроизводства в машине универсального движения человеческих рук. Эта потребность была удовлетворена появлением роботов, которые воспроизвели три человеческие функции: воспринимать внешнюю обстановку, оценивать ее и планировать свои действия в соответствии с заданием и активно воздействовать на внешнюю среду в ходе совершения предписанной работы. По этим функциям и результатам деятельности прослеживается аналогия человека и робота. Но внутренняя природа робота далека от биологической.
Упоминание о живых существах, созданных людьми и их напоминающим своим внешним видом и поведением можно встретить в древних мифах и легендах.Такими являются легенды о медном всаднике Талос ( третий век до н.э.), обладающем чудовищной физической силой глиняном колосе Големе. Первые известия о реально существовавших искусственных творениях человека имевших сходство с живыми существами связаны с механическими куклами для увеселения высшего света: деревянной модели голубя вращающегося при помощи струи сжатого воздуха (350 г. до н.э.), "оживающих статуях" бога Динонисия и его жены Арианды в храме Дионисия. Подлинный расцвет подобного творчества начался в Европе с развитием механики, когда стали конструировать примитивные андроиды, т.е. человекоподобные механизмы. Р.Бэкон построил модель говорящей головы, А А.Магнус "железного человека". Одним из самых совершенных образцов технического мастерства в этом направлении является андроид "Писец": сидящая за столом девушка аккуратным почерком выписывает слова, фразы и даже может нарисовать собаку. В 20 веке наметился более ощутимый прогресс в создании роботов того вида, который характерен для них сейчас. Об этом свидетельствует и появление самого слова "робот", которое происходит от чешского слова robota, что означает принудительный труд. В английский язык это слово пришло из пьесы Карела Чапека "R.U.R" ( Rossum,s Universal Robots - Россумские универсальные роботы). Роботы представлены как абсолютно человекоподобные, но бездушные и агрессивные по отношению к человеку. В реальности же дело ограничивалось созданием антропоидов, работающих по жесткой программе на различных выставках, имеющих крайне ограниченное применение.
Возникновение современной робототехники связано прежде всего с компьютеризацией производства, а более конкретно с появлением программных средств - языков управления роботами и операционных систем робототехнических комплексов. Большую роль в робототехнике сыграли появления станков с ЧПУ. Промышленная робототехника унаследовала от станкостроения основные принципы числового программного управления.Наконец немаловажную роль в развитии современной робототехники сыграло создание копирующих манипуляторов, которые предназначались для обслуживания контрольно-измерительной аппаратуры при проведении технологических операций в зонах, опасных для человека.
Современный робот является сложным техническим устройством, предназначенным для выполнения разнообразных работ с помощью рабочих органов, органов чувств и систем управления функционально заменяющих соответствующие человеческие органы. Такой робот состоит из следующих частей:
- механического манипулятора с захватным усройством, похожим на человеческую руку - элемента, унаследованного от копирующих монипуляторов.
- системы "органов чувств" - датчиков и двигательной системы, приводящий манипулятор в движение и впервые примененных в станках с ЧПУ.
- управляющем системы - мозга, состоящего из компьютера или специализированной решающей системы. т.е.элементов, взятых из вычислительной техники.
В процессе выполнения работы робот воспринимает информацию об окружающей среде от органов чувств, анализирует ее с учетом полученного задания и вырабатывает команды, выполнение которых обеспечивает успешное завершение работы. Промышленные роботы представляют собой многофункциональные манипуляторы с возможностью многократного программирования. Они обеспечивают комплексную автоматизацию производства, поскольку устраняют простые рутинные операции рабочего и ликвидируют его малоквалифицированные однообразные действия. Роботизация производства меняет стиль производства, делает его более экономным, рациональным, стандартным, укрепляет трудовую дисциплину и деловой ритм, исключает из технологического процесса влияние человеческих эмоций, утомляемость. невнимательность и повышают качество и ритмичность производства, уменьшает расходы, связанные с травматизмом и профзаболеваниями, сокращает расходы на социально-бытовые и культурные услуги.
Прослеживая историю развития робототехники можно выделить определенные этапы этого развития и соответственно поколения роботов.
Первый этап развития робототехники начался с выдачи патента американским инженерам Д.Диволу и Д.Энгельбергеру на "программный способ перемещения предметов". Реализацией этого патента стало создание "автоматического программируемого аппарата" с числовым программным управлением в 1958 году. Это были роботы первого поколения, которые работали по жесткой программе управления. Они не обладают качествами, которые позволяют им полностью заменить человека даже на наиболее простых участках производства, требующих утомительного монотонного труда. Сфера применения роботов первого поколения ограничена теми производственными процессами, в которых принципиально возможна и экономически целесообразна организация жестко заданной окружающей среды, позволяющей работать по заданной программе. Они в большинстве случаев применялись для перемещения деталей, инструментов или технологической оснастки между оборудованием. Такие роботы широко распространены и теперь с разнообразием своих конструкций и применяются в механической обработке, литейном производстве, радиоэлектронной промышленности,медицине, в космических исследованиях.
Второй этап развития робототехники начинается с создания систем очувствления роботов, которые позволяют роботу расширить свои возможности, упростить требования к вспомогательным системам, освоить более сложные операции. Роботы второго поколения получили в свое распоряжение технические системы и датчики, аналогичные органам чувств человека: зрение, осязание, обоняние, слух. Роботы второго поколения - это адаптивные роботы, работающие по гибкой программе, "киберы", наделенные системой "очувствления", блоками обработки информации и управления.
Третий этап развития робототехники только начинается. Для этого этапа характерно стремление придать роботехническим системам наряду с сенсорными возможностями некоторые черты интеллекта человека. Роботы третьего поколения - это роботы, которые имеют такие способности как делать логические выводы из неполных и противоречивых данных, накопление опыта, корректировка поведенческой активности. . Роботы третьего поколения - это интегральные устройства, представляющие собой технические системы, способные распознавать неизвестную, быстро меняющуюся обстановку, автоматически оценивать ситуацию и принимать решения о последующих действиях. Возникающие при создании таких роботов теоретические и технические проблемы решаются в тесной связи науки и техники о чем будет идти речь в дальнейшем.
Благодаря автоматизации и роботизации человек уходит из сферы материального производства в область информационного обслуживания. Объем информации, ее сложность непрерывно возрастают как возрастает и необходимость ее быстрой обработки и выдачи. Человек сам уже не может справиться с теми информационными задачами, которые возникают не только в ходе его производственной деятельности,но и в процессе его жизнедеятельности вообще. На помощь человеку приходит вычислительная техника.
Люди уже давно использовали различные технические средства. Более 1500 лет назад были изобретены счеты, которые вплоть до 17 века оставались практически вне конкуренции. Затем началась эпоха популярности создания счетных устройств. Теолог и математик Д.Непер разработал логарифмы, которые позднее были встроены в логарифмическую линейку. На основе логарифмов Б.Паскаль создал вычислительную машину механического типа. В 1673 году Лейбниц изготовил механический калькулятор. В 1804 году Ж.Жаккард изобрел перфокарты. После разработок Ч.Бэббиджем принципов работы вычислительных машин и используя перфокарты американец Г.Холлерит в 1870 году создал статический табулятор для обработки переписи населения США. Он организовал фирму по производству табуляционных машин, которая после нескольких перенаименований и слияний в 1924 году получила называние IBM (Internacionai Business Machines Corporation). К началу 20 века были созданы все предпосылки для научного подхода к проблеме создания вычислительных систем, всю историю которых можно разбить на ряд этапов и соответствующих поколений ЭВМ.
Идеи создания ЭВМ возникают одновременно и независимо друг от друга в конце 30-х - начале 40-х годов в четырех странах: США, Великобритании, Германии, СССР.
В 1937 г. Дж.Атанасов (США), работая над докторской диссертацией по физике столкнулся с большим объемом вычислений и у него возникает идея эти вычисления автоматизировать. Вместе со своим аспирантом КЛ.Берри он создает настольную работающую модель ЭВМ п продолжает над ней трудиться до 1942 г., когда его работы были прерваны войной. В 1942 г. инженер фирмы ИБМ (США) А. Фелирс создал модель эдектронного множительного устройства. В конце 30-х годов С.А.Лебедев приступил к конструированию ЭВМ. работы над которой были прерваны войной. Весной 1945 г. в США была построена ЭНИАК,содержащая 18000 электронных ламп. В 1943 г. в Лондоне была построена машина "Колос" на 1500 электронных лампах. В 1946 г. Дж. фон Нейман предложил ряд новых идей организации ЭВМ на основе которых была создана архитектура ЭВМ. Первая ЭВМ с хранимой программой была создана в Великобритании в 1949 г. (машина ЭДСАК, конструктор М. Уилкс). Первое поколение ЭВМ создавалось на основе электромеханического реле, а впоследствии на электронных лампах в 40-50 годах. Впервые была осуществлена автоматизация процесса долгих и сложных вычислений. В 1941 году немецкий инженер Конрад Цузе разработал "программно-управляемое устройство Z3", основанное на двоичной системе счисления. В США чуть позже - в начале 1943 года Говард Эйкен создал вычислительную машину Марк-1, которая как и Z3 была создана на ограниченной базе механических реле,возможности которых к этому времени были практически исчерпаны. В конце 1943 года в Англии под руководством Алана Тьюринга на основе 2000 электронных вакуумных ламп была построена более мощная ЭВМ "Колосс", а в 1949 году был создан под руководством Мориса Уилка первый в мире универсальный компьютер "EDSAC" - электронный автоматический калькулятор с памятью на линиях задержки. Наконец в СССР в 1949-1951 годах в Киеве под руководством С.А.Лебедева была создана первая в нашей стране ЭВМ - Малая Электронная Счетная Машина (МЭСМ), а через год в Москве начала работать Большая Электронная Счетная Машина (БЭСМ), на которой впервые в мире были установлены более надежные и быстродействующие оперативные запоминающиеся устройства на ферритовых кольцах.
Второе поколение ЭВМ появилось в конце 50-х годов. Ненадежные и употреблявшие много энергии вакуумные электронные лампы были заменены транзисторами, что, с одной стороны, уменьшило габаритные размеры ЭВМ, а, с другой, - повысило степень их надежности. Второе поколение ЭВМ позволило существенно расширить сферу использования вычислительной техники, приступить к созданию автоматических систем управления.
1 июля 1948 года в газете "Нью-Йорк таймс" было помещено сообщение об изобретении нового устройства - транзистора, который можно применять вместо электронных ламп. Транзистор представляет собой германиево-кремниевый кристалл величиной с булавочную головку заключенный в металлический цилиндр длинной около сантиметра. Электроника вступила на путь минитюризации. Но полупроводниковая электроника боялась механических повреждений и химических загрязнений неизбежных при сборке и пайке схем вручную. Возникла более перспективная технология изготовления интегральных схем: создание транзисторов на плате а проводящие соединения между ними напылением металла в бороздки. В силу этого появилась тенденция автоматизированного производства интегральных микросхем.
Третье поколение ЭВМ появилось во второй половине 60-х годов, когда фирма IBM разработала первую систему машин IBM-360 на основе интегральных схем.
Инженер фирмы "Intei" Маршиан Эдвард Хофф - младший заменил несколько жестко специализированных микросхем одной универсальной, названной впоследствии микропроцессором. 7 апреля 1964 года корпорация IBM объявила о создании семейства вычислительных машин - "Система- 360". Каждая машина этой системы была универсальной со стандартизированными принципами программирования и интерфейса ввода-вывода. Появилась возможность заменят и добавлять различные элементы ЭВМ. Был предложен широкий набор периферии и программного обеспечения. Появился монипулятор типа "мышь" и диалоговый интерфейс человека с компьютером что дало возможность работать с компьютерам людям различных не связанных с электроникой специальностей.
Четвертое поколение ЭВМ своей конструктивной основой имеют интегральные микросхемы с большой (БИС) и сверхбольшой (СБИС) степенями интеграции, содержащие тысячи и сотни тысяч транзисторов на одном кристалле. Достигается дальнейшее упрочение контактов человека с ЭВМ путем повышения уровня программирования, значительного развития периферийных устройств. Появляются разработки, реализующие голосовую связь с ЭВМ.
В 1979 году фирма IBM выпустила свой первый персональный компьютер IBM-PC, чем положила начало новой индустрии. Созданы многопроцессорные ЭВМ реализующие параллельную обработку данных на основе которых ведутся работы по созданию искусственного интеллекта. Начал выпускаться процессор "Pentium" который позволяет создавать многопроцессорные персональные системы.
С конца 80-х годов наступает период пятого поколения в развитии ЭВМ. Машины этого поколения коренным образом отличаются от машин предшествующих поколений как тем, что они строятся на основе сверхбольших ИС, так и по своей структуре. Структура фон Неймана сохраняется в виде ядра, вокруг которого вырастают новые блоки. Блок общения обеспечивает интерфейс между пользователем и ЭВМ на языке, близком к естественному. Важное место в структуре занимает база знаний определенной предметной области. Блок- решатель организует подготовку программы решения задачи. Широко используются модели и средства, разработанные в искусственном интеллекте. К 1990 г. было изготовлено 150 млн.ЭВМ пятого поколения. Это поколение компьютеров находятся на стадии разработки и должно обладать возможностью взаимодействия с человеком при помощи человеческой речи и графических изображений, способностью обучаться, производить ассоциативную обработку информации, делать логические суждения, вести "разумную" беседу с человеком в виде вопросов и ответов.
Более того, рождается новое направление - интегральная логика, основанная не на потоке электронов, а на потоках света. В ЭВМ каждое переключение реализует передачу единицы информации. В оптических ЭВМ (ОВМ) такое переключение будет нести огромный объем информации, а быстродействие в принципе может достичь порядка миллиарда операций в секунду и идти со скоростью света. В ОВМ вместо машинных могут быть использованы естественные языки и средства речевого диалога что значительно повысит интенсивность и эффективность общения человека и машины. Новый качественный скачек возможен и в микроминитюризации машин путем превращения единичных молекул в элементы электронных схем а в перспективе может привести к созданию биокомпьютера. Уже сейчас есть определенные практические подвижки в этом направлении. Так, в Японии создан новый материал путем охлаждения молекул до почти абсолютного нуля с последующим облучением лазерным лучом. Этот материал позволяет записывать до 10 млрд. бит на одном квадратном сантиметре.
Таким образом, электронно-вычислительная техника за короткий период времени своей эволюции проделала такой стремительный путь, с каким не сравнится ни одно изобретение. Рост средней производительности ЭВМ в процессе этого развития можно изобразить следующим образом (рис. 1).


Рис.1. Рост средней производительности ЭВМ (25,72).

Автоматизация, роботизация и комьютеризация производства стимулировали появление и развитие других отраслей техники. Возникает атомная энергетика, дальнейшее развитие получает химизация производства и металлургия, гигантскими шагами развиваются средства транспорта, телевидение, человек создал космическую индустрию и вышел в безграничные просторы Космоса.

2. Структура техники как системы
средств деятельности.
В результате возникновения и дальнейшего развития техники человек по своему отношению к природе стал особым, качественно новым существом. Если животные продолжали относиться к природе непосредственно, при помощи своих естественных органов, то человек относится к ней опосредовано, при помощи орудий труда. Формируется отношение "человек-орудие труда- предмет труда", которое в масштабах всего человеческого коллектива выступает как отношение "общество-техника-природа". При помощи техники люди начинают подчинять себе природу для удовлетворения своих потребностей. Люди стремятся подчинить себе природу при помощи веществ и сил самой природы. "Применяя силу природы против сил природы,- писал К. Ясперс,- техника господствует над природой посредством самой природы" (3,117). Человек усиливает свои естественные органы искусственными, реагирует на природные последствия. "Итак,- заключает испанский философ Х. Ортега-и -Гассет, -техника - это реакция человека на природу или обстоятельства, в результате которой между природой, окружением, с одной стороны, и человеком - с другой, возникает некий посредник - сверхприрода или новая природа, надстроенная над первичной" (3,171).
Система "человек-орудие труда" получила название "совокупного рабочего механизма". Элементами этой системы являются человек с его физическими и духовными потенциями участвующий в трудовом процессе, или личный элемент совокупного рабочего механизма и орудия труда, или вещный элемент этой системы. Функция совокупного рабочего механизма состоит в преобразовании сил и веществ природы для определенных нужд человека и общества при помощи физической и духовной деятельности человека и преобразованных для этих целей сил и веществ природы - орудий труда.
Философский анализ возникновения и дальнейшего развития техники как средства деятельности позволяет выделить существенные черты этого аспекта техники. К ним можно отнести следующие:
- техника не дар природы. Она возникает в процессе активной и специфической преобразующей человеческой деятельности, в процессе труда. Именно труд является исходным моментом в понимании техники.
- техника - промежуточное звено в процессе целенаправленной деятельности человека по преобразованию сил и веществ природы. Благодаря технике отношение человека к природе становится опосредованным.
- поскольку труд всегда имеет общественный характер, техника создается и развивается в обществе, влияя в свою очередь не развитие и функционирование последнего.
- деятельность человека весьма разнообразна. Соответственно этому техника существует как система разнообразных средств деятельности.
- техника создается людьми на основе определенных знаний свойств веществ и сил природы, она является овеществленной силой человеческих знаний, реализацией этих знаний.
- техника является материальной основой формирования самого человека, его физических и духовных способностей.
В литературе существуют различные определения техники как средства человеческой деятельности . С.В.Шухардин в своей книге "Основы истории техники" привел их в определенную систему, которая включает более 30 таких определений: как средства труда, орудия труда, производительная сила, все что человек ставит между собой и природой и др. (см. 5,72-74). Каждое из приведенных определений отражает какой-то один аспект техники, а не в необходимой степени все существенные признаки техники. Если же попытаться отразить все вышеприведенные существенные черты техники в рассматриваемом здесь аспекте, то определение техники можно сформулировать так: техника - это совокупностьь искусстчвенно созданных средств деятельности людей.
Техника как совокупность средств человеческой деятельности представляет собой определенную систему со сложной структурой. В силу этой сложности правомочен различный "срез" этой системы - горизонтальный, вертикальный, по характеру используемых законов и , наконец, по характеру использования законов.
При горизонтальном "срезе" техника предстает как система, состоящая из подсистем, расположенных одна рядом с другой и выполняющих различные функции. В этом случае возможно выделение производственной техники как главнейшего элемента системы, техники транспорта и связи, культуры, образования, науки, строительной, информационной, космической, военной, техникой быта. Между этими видами техники существуют сложные структурные связи и нет четко очерченных границ. Так, одно и то же техническое устройство может быть элементом различных видов техники. Телевизор, к примеру, может быть элементом техники науки, образования , быта и т.д. При таком структурном "срезе" вся совокупная техника предстает перед нами разделенная на отдельные, лежащие друг возле друга функциональные виды.
При вертикальном "срезе" техники одна подсистема включается в другую. отношения между различными элементами этой системы есть отношение единичного, особенного и общего. В этом случае выделяются различные уровни техники:
Отдельные технические средства.
|
Технические системы.
|
Отрасли техники.
|
Виды техники.
|
Совокупная техника.
Совокупная техника предстает перед нами как система, состоящая из различных ее видов (производственная, строительная, техника связи и транспорта и др.). Виды в свою очередь включают отдельные отрасли техники. Например, производственная техника подразделяется на машиностроительную, химическую, металлургическую, энергетическую, сельскохозяйственную, транспортную, технику связи, горного дела и электротехнику.
Каждая отрасль техники существует или в форме отдельных технических средств ( инструменты, станки и т.д.) или, что становится все более характерным для современной техники, в виде технических систем ( различные виды автоматических линий, информационные системы и т.д.), состоящих из отдельных технических средств.
Уровни техники выявляются как подсистемы, состоящие из определенных элементов каждая из которых выполняет определенные специфические функции. Такой системой являются не только виды и отрасли техники, но и каждое отдельное техническое средство. Так, машина - это система сложных взаимосвязей множества технических элементов деталей, узлов). Она функционирует в связи с комплексом других машин и выступает в этой технической системы как подсистема.
Орудия труда в самом процессе труда занимают промежуточное положение между человеком и предметом труда.Поэтому среди элементов, составляющих орудия труда, можно выделить два, условно назвав их "человеческой стороной" и "предметной стороной".
Каждый уровень техники от отдельного технического средства до совокупной техники является результатом использования, практической реализацией знаний людей о законах природы, которые определяют технические принципы вновь создаваемых артефактов и даже структуру совокупной техники, существующей в обществе. Рассматривая технику как овеществленное или материализованное знание о законах природы,ее можно представить в виде системы, отдельные элементы которой различаются между собой по характеру используемых законов и по характеру использования законов.
Законы внешнего мира, используемые в технике, это законы механические (физические), химические и биологические. В соответствии с этим по характеру используемых законов техника может быть представлена как система, элементами которой являются механическая (физическая). химическая и биологическая техника. При этом, в настоящее время основную массу совокупной техники составляет техника, основанная на применении механических и вообще физических законов. "Если присмотреться к современной технике, - писал С.И.Вавилов, - то окажется, что большая ее часть обязана своим существованием применению физики. Таков весь механизированный транспорт, наземный. морской и воздушный, такова вся электротехника, теплотехника, все технические применения света, вся автоматика и телемеханика, значительная часть строительной техники. Современную технику можно назвать "технической физикой" в несколько более широком смысле слова, чем обычно принято" ( 6 , 6).
В общей массе совокупной техники неуклонно возрастает удельный вес химической техники благодаря химизации народного хозяйства. Этот процесс идет, с одной стороны, по линии химизации производственных процессов, перехода от механической технологии к химической в различных отраслях техники, а с другой - по линии создания так называемой "большой химии" или химической индустрии, обеспечивающей общественное производство массой искусственно создаваемых (синтетических) веществ.
Возраст бионической техники - бионики нельзя сравнить с химической, тем более с механической техникой. Она делает нынче только свои первые шаги. Однако эти шаги настолько эффективны, так резко меняют сложившиеся представления о принципах проектирования и конструирования технических систем, что технику будущего все чаще видят как технику, построенную на принципах бионики.
Что касается структуры техники по характеру использования законов, то ее можно представить состоящей из трех элементов, которые возникали последовательно одна вслед за другой в ходе технического прогресса. Большая часть истории техники - это техника, основанная на производственном опыте и трудовых навыках, так называемая эмпирическая техника. Позже, с появлением машинного производства возникает техника, создаваемая на основе как производственного опыта, так и научного знания. Современная техника конструируется на основе научных знаний, она является инобытием науки.
Структура системы техники как средства человеческой деятельности изменяется в зависимости от взаимоотношений техники с человеком. Это делает необходимым рассматривать технику в системе "человек - техника".


3. Система "человек - техника" и
создание искусственного интеллекта.
Обычно выделяют два класса систем - системы, обладающие саморегуляцией, и системы не обладающие этим свойством. К первым относятся растения, животные,человек, т.е. живые организмы поддерживающие свою жизнедеятельность посредством обмена веществ в соответствии с изменением внешних условий. Техника как все другие общественные явления не обладает саморегуляцией. Конечно, автоматическая техника может функционировать в определенном технологическом процессе без непосредственного вмешательства человека. Но цели этого функционирования, а тем более развития задаются человеком. Это обстоятельство является подтверждением тезиса о том, что техника функционирует и развивается лишь в соединении с человеком и для понимания развития и функционирования техники следует рассматривать систему "человек-техника".
В силу высказанных соображений нельзя согласиться с различными утверждениями о независимости развития техники от человека. Подобные утверждения как это не странно бытуют в литературе. Примером этому может служить суждения В.А.Кутырева о том, что "технические силы...образуют онтологическую самостоятельность и собственную рациональность. Производство способно полностью развивать само себя" (7, 276). Возникает тенденция к саморазвитию целых отраслей производства , утверждает В.А.Кутырев считая это вполне закономерным поскольку по его мнению "при достижении какого-то определенного уровня сложности мира, возникающего в результате человеческой деятельности, происходит его "отпадение" от своего творца" ( 7,278) и он начинает развиваться по своим объективным законам. Надуманность такой трактовки развития техники независимо от человека вполне очевидна и опровергается как практикой технической деятельности, так и наукой.
Система "человек - техника" является объектом внимания многих специалистов и наук. "Проблема "человек - техника" - одна из основных проблем современной науки, - пишет известный российский психолог Б. Ф. Ломов. - Ее решение предполагает совместную работу инженеров, математиков, психологов, физиологов, анатомов и представителей многих других научных дисциплин, ибо по существу своему эта проблема требует комплексного исследоввания" (8 ,19). Эта проблема прежде всего объект внимания не так давно возникшей науки эргономики, которая комплексно изучает трудовую деятельность человека в системах "человек-техника-среда" с целью обеспечения эффективности, безопасности и комфорта. В связи с системным проектированием, т.е. проектированием не технического устройства, а системы "человек-машина" эта система привлекает все большее внимание многих отраслей технического знания. Деятельность человека во взаимосвязи с работой машин, т.е в системе "человек-машина" изучает инженерная психология.Основными проблемами инженерной психологии являются:анализ задачи человека в системах управления и способов его связи с другими компонентами систем, анализ структуры деятельности оператора, исследование факторов эффективности и надежности действий оператора, изучение процесса приема человеком информации о состоянии управляемых объектов, анализ процесса переработки информации человеком,ее хранение и формирование решения. исследование управляющих действий человека. Поэтому нельзя согласиться с мнением о том, что "сейчас почти полностью отсутствует научный анализ многообразных человеко-машинных отношений" ( 1,321), высказанный немецким философом техники Г. Рополем. Дело заключается совершенно в другом.
Перечисление проблем, которые изучает инженерная психология являющаяся частью эргономики, свидетельствует о том, что эргономика и инженерная психология по существу изучают не человека в этой системе, а так называемый человеческий фактор, т.е. те качества и свойства человека, которые "работают" в ходе его непосредственной трудовой деятельности.Они рассматривают человека-оператора (группу операторов) и машину, посредством которой он (они) осуществляют трудовую деятельность. Отсюда - определенная ограниченность и схематизм исследования системы "человек-машина", которые очень удачно выразил А.Е Аствацатуров в своей монографии "Основы инженерной эргономики":"Система "человек - машина - среда", или, проще, "человек - машина", по существу - абстракция, а не физическая конструкция. Система представляет собой концепцию, поскольку связана с преобразованиями (входных сигналов в выходные), которые невозможно наблюдать, а можно увидеть лишь результат преобразований. Концепция СЧМ должна быть основана на определенных допущениях" ( 9,15).
Философия техники также имеет объектом своего внимания систему "человек - машина". Но философское исследование этой проблемы проводится на широком социальном поле с учетом политических, экономических, нравственных и других многочисленных социальных факторов. Кроме того, философию техники интересует логика взаимосвязи человека и машины, социальные следствия этой взаимосвязи и тенденции ее развития. Наконец, философия техники призвана интегрировать знания об отдельных аспектах взаимосвязи человека и машины, которые освещают эргономика, социология труда и другие конкретные в том числе и технические науки, в определенную систему и разработать методологические основы анализа взаимоотношения человека и техники.
Проблема взаимосвязи человека и техники в истории философии и культуры в известном смысле традиционная. При этом обычно высказывались не только восторженные мысли о технике, ее могуществе и тех перспективах которые она открывает людям в свое развитии, но и опасения, что техника может поработить человека. И чем большие успехи имела техника, тем эти опасения были все более громкими .Еще Аристотель, а затем Г. Уэллс и О. Шпенглер писали о том, что машины могут выйти из под контроля людей и сделать их своими рабами. Но особенно злободневной эта проблема стала в философии экзистенциализма, в центре которой - человек, его ценности и интересы.
Н. А. Бердяев в своей работе "Человек и машина" прямо писал, что "не будет преувеличением сказать, что вопрос о технике стал вопросом о судьбе человека и его культуры" (10, 147). Техника, писал он, есть средство деятельности человека. Между тем часто средства жизни подменяют цель. Творение восстает против своего творца - человека, не подчиняется ему. Машина хочет чтобы человек принял ее образ и подобие. Н. А. Бердяев верно подметил противоречивое воздействие техники на человека, которая с одной стороны несет с собой комфорт и облегчает труд человека, а с другой - уничтожает индивидуализацию, разрушает красоту старого мира, делает производство вещей анонимным. Если вначале человек был рабом природы, затем рабом государства, национального единства и классов, то теперь он становится рабом техники, в которую незаметно превращается и сам человек.
К. Ясперс также отмечает амбивалентное воздействие техники на человека и его деятельность. Техника сокращает затраты труда, пишет он, но вместе с тем усиливает его интенсивность. Величию творческого созидания в техническом мире противостоит зависимость творческого применения результатов этих творческих исканий . Теряется перспектива труда, его цель и смысл, человек становится как бы частью машины, техника заставляет человека до предела напрягать свои силы, он сам становится одним из видов сырья, подлежащего целенаправленной обработке. Человек уже не может освободиться от воздействия созданной им техники, "человек попал под ее власть, не заметив, что это произошло и как это произошло" ( 4,139). Судьба человека, утверждал К. Ясперс, зависит от того, подчинит ли он себе технику и последствия ее развития.
Подобными тревожными мыслями полна западная философия техники. Справедливости ради заметим, что в работах Н. А. Бердяева, К. Ясперса и других экзистенциалистов вовсе не утверждается бессилие человека перед демонией техники. Отмечая, что человек стал рабом машины, они утверждают необходимость освобождения человека от этого рабства, возможность этого освобождения посредством активной человеческой деятельности. Так, М.Хайдеггер, касаясь взаимоотношения человека и машины, указывая на опасность того, что человеческое существо поступает теперь прямо в руки существу техники, подчеркивает, что человек не бессилен перед техникой. Рассуждения западной философии техники о демонии техники над человеком с одной стороны отражают те негативные явления которые вызваны бурным техническим прогрессом (правда часто в явно преувеличенной форме), а с другой - служат предупреждением обществу о той потенциальной угрозе, которая таится в техническом прогрессе если он выйдет из под социального контроля. Каково же действительное взаимоотношение человека и техники с точки зрения философии техники?
Вполне очевидно, что человек вынужден создавать технику и пользоваться ею с целью дополнять, усиливать свои естественные органы искусственно созданными средствами,техникой. Это обстоятельство свидетельствует о том, что человек представляет собой крайне несовершенное орудие для выполнения технических функций. Его историческая роль в этом отношении - роль временного заменителя, которую он со временем уступает технике, оставляя за собой право определять ее развитие и функционирование для достижения определенных целей.
В технике материализуются идеи человека. Она - орудие человеческой деятельности. Поэтому хотя техника как бы восполняет "несовершенство" естественных органов человека, она имеет смысл лишь постольку, поскольку включена в человеческую деятельность, служит удовлетворению материальных и духовных потребностей людей. Только это обстоятельство заставляет технику быть не грудой камня, металла, пластмассы и пр., а находиться в движении, определенным образом функционировать. По словам известного обозревателя В.Цветова который многие годы провел в Японии крупная японская фирма "Мацусита дэнки" понимает, что "чем выше и ярче высоты научно-технического прогресса, тем важнее становится человек, без которого роботы, ЭВМ. станки с числовым программным управлением - не более чем замысловатая груда металла" (1 1 , 37).
По мере совершенствования техники человек имеет возможность более рационально ее использовать, т.е. в большей степени подчинять технику своему контролю. Создавая все более сложные технические устройства человек повышает эффективность их использования, КПД их работы и вместе с тем тратит все меньше энергии для приведения их в движение. По сути, речь идет об изменении содержания и характера труда когда орудия труда превращаются "из орудий человеческого организма в орудия механического аппарата" ( 12, 389). Так, если 100 лет назад из всей произведенной на Земле энергии на машины приходилось лишь 6%, а доля физического труда человека достигала 15%, то сейчас машины взяли на свои плечи основную тяжесть работы, на долю человека приходится лишь 1% тяжелого физического труда. Человек становится истинным повелителем не только естественной, но и искусственной, созданной им среды.
Техника в своем развитии и функционировании отражает реализованные в ней человеческие возможности, она как бы копирует историческое состояние человека т так же противоречива, как и сам человек. "Техника во все исторические моменты выражает людей и идею человечности данного времени" - пишет А.Худинг ( 1 , 399). С другой стороны, человек посредством общения, обмена трудом и его результатами всегда был продуктом своей деятельности и в первую - технической деятельности.
С точки зрения философии техники человек и машина представляют собой диалектическое единство. Действительно, человек и машина едины: человеческое существование, его деятельность невозможны без орудий этой деятельности, в частности машин. Но и машина имеет свой смысл поскольку она является средством деятельности человека и при помощи ее последний осуществляет цель своей деятельности. Вместе с тем, человек и машина противоположны: в машине идеи человека материализованы, приобрели форму объективной реальности существующей вне и независимо от сознания людей. Создавая машину человек свои собственные идеи и цели отделяет от себя.
Важно иметь в виду, что создавая и совершенствуя технику, передавая ей все болшее и большее количество своих функций, человек развивает самого себя и техника выступает таким образом не только как средство деятельности человека, но и как средство его развития. Отмечая, что распределение функций между человеком и техническими устройствами является важнейшей чертой человеческой деятельности, С.М.Шалютин подчеркивает, что "механизация нового класса функций выступает как важная сторона качественного преобразования самой деятельности человека"(19,103).
Философия техники не только вырабатывает методологию изучения системы "человек-машина", но и определяет всеобщие принципы связи человека с машиной. Содержание этих принципов сводится к принципам целевого единства, дополнения или компенсации и функционального моделирования. Принцип целевого единства означает, что в системе "человек-техника" техника осуществляет все функции, которые раньше выполнялись человеком и целевое назначение естественных органов человека и технических средств таким образом совпадают : те и другие являются орудиями преобразования природных предметов и сил в соответствии с потребностями людей. Принцип дополнения, компенсации заключается в том, что техника по своему назначению является искусственным продолжением естественных органов человека, их дополнением. Машина компенсирует несовершенство естественных органов человека. Наконец, суть принципа функционального моделирования основывается на двух первых и заключается в том, что техника репродуцирует естественные органы человека в природном материале согласно законам технического моделирования, машина конструируется не только по структурному подобию с человеком, но все в большей степени по функциональному подобию.
Действительно, если взглянуть на историю развития техники ,то мы обнаружим, что в период возникновения и на первых этапах развития человеческого общества связь техники с человеком проявлялась очень наглядно. Техника того периода строилась в основном по антропологическому принципу, т.е. в соответствии с физическими органами человека, что обеспечивало структурное подобие техники этим органам человека: молот был как бы продолжением руки, лопата - ноги и т.д. При этом ручные орудия труда не просто копировались под естественные органы человека, а создавались как их продолжение для усиления воздействия человека на предмет труда. Аналогично и в процессе дальнейшего развития на первых стадиях зарождения машин их пытались строить по аналогии с явлениями природы или ручными орудиями труда. И только с постепенным накоплением производственного опыта и знаний машина освобождается от структурного подобия органам человека. Эта "свобода" техники от человека и наоборот становится, естественно, еще большей с переходом к автоматизированному производству. Структурное подобие между человеком и техникой характерно для ручной техники, менее - для машинной и совсем не свойственна для автоматизированной, когда структурное подобие техники человеку сменяется функциональным,т.е.когда машина структурно не похожая на человека замещает человека в технологическом процессе выполняя его функции.
Касаясь нынешнего этапа развития техники П.В.Копнин справедливо писал, что"совершенно не обязательно, чтобы орудие труда по своей форме и физической природе было подобно тому естественному органу, который оно продолжает и усиливает. Паровоз и самолет ни по физической природе, ни по форме не тождественны ногам человека или лошади. Но по своей функции они подобны им... Не простое копирование и подрожание природе, а создание нового, не существующего в природе, но необходимого для общественной жизни - магистральный путь человеческого производства и познания" (1 3, 164).
Философия техники исследует не только всеобщие формы взаимосвязи человека и машины, но и исторические виды их реализации. Так, в условиях автоматизации, появления роботов и ЭВМ проблема "человек-машина" порождает эргономические и психологические проблемы, проблемы языка, адаптации и обучения людей. На различных этапах развития техники эти вопросы решались по разному. Если до автоматизации человек приспосабливался к технике, то теперь техника приспосабливается к человеку, происходит переориентация с технических вещественных факторов производства на его человеческие факторы. Следовательно, четырехзвенной системе машин соответствует новый тип связи человека с технической системой, позволяющей преодолеть технологическое подчинение работника предметным факторам производства, живого труда - овеществленному. Появляется возможность формирования нового уровня технологической свободы человека в производстве.
По мере развития автоматизированного производства и его возможностей изменяются взгляды на соотношение функций человека и машины. Первоначальный восторг людей от автоматизации порождает мнение о том. что в процессе развития автоматизации и ЭВМ постепенно, но довольно быстро, все трудовые функции человека замещаются техническими устройствами, человек уходит из производственного процесса, возникают "заводы без людей".
Когда улегся первый восторг от автоматизации, разделение функций человека и машины стало более очевидным, возникли более сложные проблемы их взаимоотношений отличающиеся большим разнообразием на различных этапах решения конкретной задачи. На этапе обнаружения проблемы и уяснения подлежащей решению задачи человеческий мозг работает боле эффективно чем машина и именно человек определяет проблемную ситуацию и основные пути и способы ее решения, хотя это не исключает возможности применения компьютера. На втором этапе производятся операции поиска и логической сортировки имеющейся информации, расчетные операции делающие информацию более точной с выделением той ее части, которая необходима для решения проблемы. Эту рутинную операцию более эффективно чем человек выполняет компьютер. На последнем этапе производится анализ отобранной информации, выработка и оценка альтернатив и выбор окончательного решения. Этот этап также как и первый предполагает в большой степени использование способностей человека нежели компьютера.
Рассматривая проблему соотношения функций человека и машины, Н.Винер в свое время отметил такие способности человека, которые определяют его преимущество перед машиной : творчество, способность оперировать с нечетко очерченными понятиями, интуицию и др. Наш мозг, утверждал "отец кибернетики", свободно воспринимает стихи, романы, картины, содержание которых любая ЭВМ должна была бы отбросить как нечто аномальное. Машины почти не способны к самопрограммированию, продолжал Н.Винер.Исходя из этих соображений он выдвинул новый для того времени принцип взаимосвязи человека и ЭВМ :"Отдайте же человеку - человеческое, а вычислительной машине - машинное. В этом и должна,по-видимому, заключаться разумная линия поведения при организации совместных действий людей и машин" ( 14 , 82-83). Такая установка оказалась весьма заманчивой : машина заменяет человека в сферах физического и рутинного умственного труда и оставляет за человеком все творческие акты. Таким образом, компьютеризация способствует творческому развитию личности, оптимизирует его деятельность, повышает эффективность этой деятельности.
Однако и этот принцип распределения функций между человеком и машиной не выдержал проверку временем в силу ряда обстоятельств. Оказалось, что задача распределения и согласования этих функций осложняется наличием многих не типовых, специализированных функций, которые должны быть реализованы в автоматизированных системах и ЭВМ человеком или машиной при отсутствии опыта реализации этих функций. Следовало учесть, что соотношение возможностей человека и машины быстро меняется в связи со стремительным развитием компьютерных систем.Не остаются неизменными и социально-экономические условия, которые непосредственно влияют на организацию совместной деятельности человека и машины. Наконец. принцип Н.Винера "человеку-человеческое, машине-машинное" акцентировал внимание на противопоставлении человека и машины. При этом автоматику, робототехнику, компьютеры рассматривались в их развитии, а умственные - логические и психологические возможности человека, имеющие не только биологический, но и социальный характер, в своем развитии остановившимися.
В действительности, эволюция человека в современных условиях не прекратилась. Эмбриональная смертность у человека достигает 40-50% что говорит действии законов естественного отбора. Происходит акселерация новых поколений, изменение генофонда в смежных поколениях, этнические изменения. На развитие человечества влияют космические факторы. В условиях научно-технической революции возникают негативные факторы как следствие неконтролируемого обществом стихийного отношения к природным силам. С изменением форм жизнедеятельности человека в трудовой процесс вовлекаются новые "пласты" его биологических и психических характеристик.
Все эти обстоятельства определили возникновение новой науки - экологии человека, которая сосредоточила свое внимание на трех группах проблем :
- мутагенное действие факторов окружающей среды ( радиации, химических веществ, лекарств, промышленных отходов) на человека.
- предупреждение генетически детерминированных болезней, проявляющихся под влиянием новых факторов.
- предупреждение профессиональных заболеваний у генетически предрасположенных лиц.
Эти проблемы решаются на основе взаимосвязи генетики и экологии человека - экогенетики. Современная наука исходит из того, что человек представляет собой диалектическое единство социальной и биологической сторон, которое на разных этапах человеческой жизни (детство, отрочество, юность, молодость, зрелость, пожилой возраст, старость) имеет свою специфику особую для каждого индивида. При этом эволюция биологических процессов не обязательно сопровождается падением творческих интеллектуальных возможностей личности, т.е. развитие личности возможно и на завершающем этапе жизни. Старение имеет различные типы - замедленный, средний и ускоренный; гармоничный, синхронный и интенсивный. Человеческий или функциональный возраст включает в себя биологический, психический, социальный и хронологический.
Уже краткий обзор свойств и качеств человека достаточен чтобы понять ошибочность оценки человека в системе "человек-техника" как существа раз и навсегда наделенными неизменными свойствами, существа остановившемся в своем развитии. Устранение этой методологической ошибки положил начало сам ее автор - Н.Винер, который показал значимость человеческих качеств личности, выступив против понимания человека как слепого исполнителя навязанных машиной функций. Это явилось отправным моментом разработки концепции эволюции системы "человек-машина" в некий интеллектуальный симбиоз, что повлекло к комплексному изучению человека в конкретных условиях его деятельности. Этим занимается эргономика.
Ныне человек и машина рассматриваются как сложное функционирующее целое, в котором ведущая роль принадлежит человеку. В этом плане разрабатываются методы учета человеческого фактора при создании техники и соответствующих условий труда. Обоснован принцип преимущественных возможностей человека и техники. Суть этого принципа состоит в том, что технические средства должны компенсировать недостатки человека, а система "человек-техника" с наибольшей полнотой должна реализовать все преимущества человека. Другими словами : в системе "человек-техника" человек должен делать то, что он делает лучше техники, а техника то, что она делает лучше человека. Таким образом, человек и техника пускают в ход свои друг перед другом преимущественные возможности и тем самым дополняют друг друга. Речь в данном случае идет не о замене человека машиной, а о реорганизации и оптимизации деятельности человека путем включения в нее машинных средств, об осознании того факта, что человек и машина имеют друг перед другом свои преимущества, выполнение которых следует оставить за ними в процессе системного проектирования.
Человек превосходит машину в обнаружении слабых сигналов, в восприятии образов, образовании индуктивных умозаключений, формировании понятий и выработке методов познания и преобразования реальности. Машина превосходит человека в быстроте ответа на сигнал, выполнении стереотипных действий, хранении информации в сжатой форме, скорости счета, способности одновременно выполнять ряд операций. Человек уменьшает количество операций, усложняя их, машина упрощает операции, увеличивая их количество. Задача организации взаимодействия человека и машины состоит в рациональном распределении и согласовании функций между ними при сохранении ответственности за человеком. Задача проектирования технических систем заменяется задачей создания человеко-машинных систем, где комплекс средств "гуманитарной автоматики" подстраивает параметры агрегатов для сохранения оператору оптимальной зоны "творческого потенциала". Можно констатировать, что современная интерпретация принципа преимущественных возможностей включает в себя обоснованную защиту приоритета человека.
Ярко выраженное практическое применение принцип преимущественных возможностей находит в системах автоматизированного проектирования. В работе конструктора содержатся как элементы творчества, так и элементы рутинной, "механической" работы, причем удельный вес этих видов работы на разных стадиях и уровнях проектирования различен. При проектировании, например, сложных электронных и механических систем на стадии выработки идеи и основных концепций будущего устройства доля рутинной работы невелика, на первый план выходит процесс творчества. Поэтому использование компьютеров на этом этапе ограничивается лишь отдельными операциями моделирования функциональных схем, проверкой алгоритмов и поиском необходимой для проектирования информации. При проектировании отдельных узлов, логических схем, конструкций устройств для которых характерно использование типовых конструкторских решений и схем, доля рутинных операций заметно возрастает. В этом случае компьютер может быть использован для подготовки некоторых документов проектирования, например, для трассировки печатных плат. В целом для всех видов проектирования характерно использование компьютеров как средства быстрого анализа и расчетной оценки вариантов проектных и конструкторских решений облегчающих процесс приближения к оптимальным решениям а также для получения выходной конструкторской документации.
В перспективе любые производственные функции человека в идеале могут мыслиться как допускающие замену машиной. Однако это не отменяет наличие функций человека как субъекта производства. Развитие автоматизации не устраняет человека, а напротив, делает более значимым его роль в производстве. Человек остается. Развитие автоматизации изменяет существующие сегодня функции человека. Но последний не освобождается от необходимости воспринимать и перерабатывать информацию, принимать решения, ориентироваться на события с малой степенью вероятности, идти на риск и на непрограммируемые поступки. "Во всех технических системах, - пишет Ф.Рапп, - в конечном счете человеческий мозг определяет цели" ( 1, 36). Будущие технические системы смогут решать любые проблемы, но они не смогут их ставить. Постановка проблем - это прерогатива человека.
Отдавая машине выполнение определенных операций, человек разгружает свой мозг от решения алгоритмических задач. Но этим он и вооружает свой мозг для решения более сложных задач. Появляются возможности для решения тех задач, которые не могли быть решены на предшествующих ступенях научно-технического прогресса. Следовательно, возникают новые функции человека, не могущие быть замещенными существующими техническими устройствами что стимулирует дальнейшее развитие техники. Передав блок этих функций технике завтрашнего дня человек создает другие познавательные возможности для решения которых он приобретает иные функции и т.д. Известный российский психолог А.Н.Леонтьев в связи с этим пишет : "Сегодня процессы, недоступные для машины, завтра могут быть формализованы и поручены машине. Но это завтра приносит человеческому мышлению и что-то новое : мышление делает шаг в своем развитии" ( 15 , 178). Подобные же мысли высказывает и К.Ясперс. Любая техническая реализация той или иной идеи имеет свои границы, утверждал он, поскольку остается такой вид труда, который способен выполнить только человек. Он не может быть заменен техникой. Важным фактом является то обстоятельство, что постоянно возникают новые виды труда. Нужно учесть и то, что машины нуждаются в ремонте, заготовке. "Таким образом, - заключает К.Ясперс, - труд просто оттесняется в другие области. Он изменяется, а не устраняется. Где-то остается исконный мучительный труд, заменить который не может никакая техника" ( 4, 125). Не следует также забывать, что человек действует как частица социального организма и поэтому машины не могут отнять у него это "человеческое". Напротив, по мере автоматизации роль человека возрастает. Надо ориентироваться не на вытеснение человека машиной, а на замену машиной тех человеческих функций, выполнение которых в силу определенных психобиологических качеств человека сдерживает реализацию его трудовых возможностей. Использование совокупного потенциала человека и машины обусловливает переход человечества на новую ступень интеллектуального и культурного развития.
Следовательно, в соотношении человека и машины обе эти стороны не являются равноправными партнерами. Ведущим партнером является человек, который придает социальный смысл и ценность автоматизации. Техницисты ратуют только за автоматизацию и компьютеризацию, беспредельное наращивание техники, а всякие другие процессы и интересы считают не заслуживающим никакого внимания. Подобным взглядам с немалой долей иронии возразил американский физик М. Ванштейн : "Это напоминает рассуждения специалиста в узкой области - по туалетам в железнодорожном вагоне. Дело его, конечно, важное и нужное, но вправе ли он считать всех остальных бездельниками ? А вдруг кто-нибудь сядет в поезд вовсе не с той целью, чтобы воспользоваться созданным им техническим шедевром!" ( Цит. по : 16, 140).
Таким образом, проблема соотношения человека и машины стала одной из основных проблем в исследовательских программах ряда наук и в философии техники. Она имеет различные решения в связи с развитием системы "человек-машина". Вначале человек приспосабливался к машине. Затем - машина к человеку. И, наконец, возникает симбиоз "человек-машина". Чем более органически соприкасаются человек и машина, тем большие требования предъявляются к человеку. Развитие знаний и способностей человека становится основой дальнейшего технического прогресса. ЭВМ - это лишь инструмент в руках человека, который ставит перед ним задачи и использует их в своих интересах. Поэтому эффективность автоматической техники, робототехники и компьютеров зависит от квалификации людей. Человек - непременное условие функционирования техники, которая выступает как материальное средство выполнения определенных трудовых функций человека. И если на протякении большей части своей истории техника постепеннно и все в большей мере замещала нетворческие стороны физических трудовых функций человека, то ныне она начинает выполнять уже умственные и даже в определенной степени творческие умственные функции людей . Но эти проблемы лежат уже в русле задач создания искусственного интеллекта (ИИ).
Поскольку в этом случае речь идет об автоматизации умственных способностей человека, точнее об имитации естественного интеллекта, правомочно вначале выяснить что понимается под естественным интеллектом. И здесь мы сталкиваемся с тем обстоятельством, что термин "интеллект" можно понимать в различных аспектах. Действительно, в литературе можно встретить мнение о том, что "не существует однозначного определения и понимания интеллекта естественного" ( 17, 167).
Интеллект (от лат. intellektus - понимание, разум, ум) - в широком смысле вся познавательная деятельность человека, в более узком - мышление, а также способность рационального познания в отличие от таких, например, душевных способностей, как чувства, воля, интуиция, воображение и т.п.
Платон определяет интеллект (нус) как то, что отличает человеческую душу от животных. В дальнейшем ранг интеллекта как бы все время ограничивался. В средневековой западноевропейской схоластике это понятие употреблялось для обозначения высшей познавательной способности ( сверхчувств, постижения духовных сущностей) в противоположность разуму ( ratio) как высшей познавательной способности. В немецкой классической философии (Кант, Гегель) термином интеллект (нем. Verstand) обозначал способность образования понятий. В дальнейшем интеллект рассматривается как врожденная или благоприобретенная способность человека к познанию, мыслительная способность человека. В прагматистской трактовке интеллект это способность справляться с соответствующими с заданиями, эффективно включаться в социокультурную жизнь, успешно приспособляться. В современной западной психологии наиболее распространенным является понимание интеллекта как биопсихической адаптации к различным обстоятельствам жизни. При этом в психологии отмечается существование трех разновидностей в понимании функции интеллекта : 1) способность к обучению, 2) оперирование символами, 3) способность к активному овладению закономерностями окружающей действительности. Таким образом, интеллект нередко трактуют как возможность приспосабливаться к новым ситуациям, использовать ранее приобретенный опыт, т.е. интеллект в этом случае фактически отождествляется со способностью к обучению. Самое существенное что отмечается при этом состоит в том, что человеческий интеллект отражает закономерные связи и отношения предметов и явлений окружающего мира и тем самым дает возможность творчески преобразовывать действительность.
В связи с успехами в развитии новых направлений научной мысли - кибернетики, теории систем, теории информации наметилась тенденция понимать интеллект как интегральную двуязычную систему которая имеет своей функцией перевод с языка пространственно-временных изображений на символически-операторный язык речевых символов. В этом случае интеллект предстает как познавательная деятельность любых сложных систем, способных к обучению, целенаправленной переработке информации и саморегулированию.
Видимо понимание, а отсюда и определение интеллекта зависят от специфики активности индивида в той или иное сфере человеческой деятельности. Одно понимание интеллекта будет у ученого, другое у политика, третье у инженера и т.д. Если обобщить все существующие точки зрения на сущность интеллекта в аспекте философии техники, то можно заключить, что человеческий (естественный) интеллект - это относительно устойчивая структура умственных способностей индивида, связанная с рациональным познанием.
Идея о возможности создания мыслящих машин "человеческого типа" волновала людей давно. Еще древние египтяне и римляне испытывали благоговейный ужас перед культовыми статуями, которые жестикулировали и изрекали пророчества (разумеется, не без помощи жрецов). Средневековые летописи полны рассказов об автоматах, способных говорить и двигаться так же, как их хозяева-люди. В средние века и даже позднее ходили слухи о том, что у кого то из мудрецов есть гомункулы (маленькие искусственные человечки) - настоящие живые, способные чувствовать существа. Парацельс оставил руководство по изготовлению гомункула. Все это отражает стремление человека познать мыслительные процессы и имитировать их на специально созданных устройствах.Однако главным моментом качественно нового этапа в развитии этой проблемы явилось создание ЭВМ, выполняющей в автономном режиме, без вмешательства человека ( в соответствии с разработанной программой) ряд функций абстрактного мышления человека.
Постепенно возникло два крайних взгляда на проблему создания искусственного интеллекта - коннективизм и символизм - обогащающие друг друга в процессе своего развития.
Коннективизм вырос из разработок в области перцептронов и первоначально стоял в стороне от ЭВМ. Перцептрон создавался как информационная модель нейронной сети в терминах кибернетики. Такие модели строятся на сетях микропроцессоров. При этом подходе искусственный интеллект понимается как процесс, возникающий при передаче информации. Методом коннективизма является численное моделирование распространения активности по сети большего числа простейших пороговых элементов со случайными связями. Это - физически активный подход к созданию искусственного интеллекта. Но чтобы получить гарантию правильного поведения такой системы нужно не только учитывать вероятность процессов внутри нее, но и структурность восприятия.Это создает сложности в работе с такими системами , необходимость ее воспитания и обучения самого оператора.
Символизм трактует искусственный интеллект как целенаправленную обработку информации (манипулирование символами). Методом такого подхода является логическое программирование компьютера. Его достижением считают уточнение понятия алгоритма. Символический подход позволил структурировать когнитивные процессы в сетях параллельной обработки информации.
Указанные два направления в работах по созданию теории искусственного интеллекта породили бионический и програмно-прагматический подходы к решению этой проблемы. Первое интересовалось проблемами искусственного воспроизведения тех структур и процессов, которые характерны для живого человеческого мозга и которые лежат в основе процесса решения задач человеком. Это направление имеет четко выраженный фундаментальный характер и его развитие невозможно без глубокого изучения мозга специфическими нейрофизиологическими, морфологическими и психологическими методами. В частности. определенное внимание при этом обращается на различие в работе правого полушария мозга, нацеленного на предметное восприятие, и левого - на абстрактное мышление. Что касается программно-прагматического направления, то оно занималось созданием программ, с помощью которых можно было решать интеллектуальные задачи. Таким образом проблема создания искусственного интеллекта рассматривается как часть общей теории программирования. При этом программы искусственного интеллекта ориентируются не только и не столько на решение конкретных интеллектуальных задач, сколько на создание средств, позволяющих автоматически строить программы на решения, когда в таких программах возникнет необходимость.
Таким образом, если одно направление создания искусственного интеллекта интересует в основном чистая наука и для них компьютер - лишь инструмент, обеспечивающий возможность экспериментальной проверки теорий процессов мышления, то интересы второй группы лежат в области техники: они стремятся расширить сферу применения компьютеров и облегчить пользование ими. "Многие представители второй группы мало заботятся о выяснении механизма мышления - они полагают, что для их работы это едва ли более полезно, чем изучение полета птиц для изучения самолетостроения" (18,10).
Заметим, что в последнее время развивается так называемый гомеостатический подход, когда мозг рассматривается как гомеостатическая система, представляющая собой совокупность противоборствующих подсистем в результате функционирования которых обеспечивается нужное равновесие всей системы в условиях постоянно меняющихся воздействий внешней среды.
Основы построения и описания познавательного и мыслительного процессов были заложены еще в Древней Греции. Софисты выработали приемы построения логических цепочек вопросов на основании ответов. Аристотель создал теорию силлогизмов. Как продолжение логики Аристотеля было появление герменевтики, формулировавшая совокупность утверждений истинность которых принималась большинством людей и применяла к ним специальные методы. После введения Ф.Бэконом понятия индукции пришла логика Дж.Буля (булевая алгебра). Ее автор показал, что логические утверждения можно закодировать в виде единиц и нулей, где единица соответствует истинному высказыванию, а нуль - ложному, после чего этими утверждениями можно манипулировать, как обычными числами.Развитие булевой алгебры к первой трети 20 века привело к формулировке идеи формальной системы и таким образом была создана платформа теории логических рассуждений. Эта теория в совокупности с идеей о строгом языке знаний стимулировала создание теории искусственного интеллекта. В 30-е годы 20 века ряд ученых - пионеров информатики, а особенно К.Шеннон поняли, что двоичные единица и нуль вполне соответствуют двум состояниям электрической цепи (включено-выключено), поэтому двоичная система идеально подходит для электронных вычислительных устройств. Маккалох и Питс предложили конструкцию сети из электронный "нейронов" и показали, что подобная сеть может выполнять практически любые вообразимые числовые или логические операции. Далее они предположили, что такая сеть в состоянии также обучаться, распознавать образы, обобщать, т.е. она обладает основными элементами интеллекта. Конечная цель виделась в создании "адаптивной цепи", "самоорганизующейся системы" или "обучающейся машины" - все эти названия разные исследователи использовали для обозначения устройств, способных следить за окружающей обстановкой и с помощью обратной связи изменять свое поведение, т.е. вести себя так же, как живые организмы. Вскоре, в 1958 году, молодой американский ученый Ф.Розенблат демонстрирует компьютерную модель электронного устройства, названного им персептроном и программирует один из самых мощных компьютеров того времени ИБМ-704 так, чтобы он моделировал действие электронной схемы персептрона. "Нельзя сказать, что мы точно воспроизвели работу человеческого мозга,- признавал Ф.Розенблат,- но пока пресептрон ближе всего к истине" (18,14). Через два года была торжественно продемонстрирована его первая действующая машина "Марк-1".
Искуственный интеллект - одна из новейших наук, появившаяся во второй половине ХХ века на базе вычислительной техники, математической логики, программирования, психологии, лингвистики, нейрофизиологии и других отраслей знания. Само название новой науки возникло в конце 60-х годов, а в 1969 г. в Вашингтоне ( США) состоялась первая Всемирная конференция по ИИ.
В то же время под искусственным интеллектом понимаются технические системы, компьютеры, обладающие определенными характеристиками и функциями. По мере совершенствования компьютеры стали принимать участие в творческих процесах: сочинять музыкальные мелодии, стихотворения и сказки, осуществлять перевод текста с одного языка на другой, распознавать образы, доказывать теоремы. Оказалось, что с помощью ЭВМ и соответствующих программ можно автоматизировать интеллектуальные виды человеческой деятельности. Для этого нужно было прежде всего создать программы для решения невычислительных задач. Об интеллекте компьютера можно было говорить, если бы он сам на основании собственных знаний сумел бы составить программу решения невычислительных задач. Следовательно, в создании ИИ основной задачей становится реализация машинными средствами тех метапроцедур, которые используются в интеллектуальной творческой деятельности человека.
Термин "искусственный интеллект" был введен Дж. Маккарти в 1956 году. Искусственный интеллект (ИИ) - это метафора и , по признанию специалистов, не совсем удачная, используемая для обозначения технических систем, способных к адаптивному (т.е. приспособляющемуся к данным условиях и изменяющемуся под влиянием изменения внешней среды) поведению. В основе искусственного интеллекта лежит моделирование отдельных аспектов и свойств мыслительной деятельности человека. Искусственный интеллект по содержанию представляет собой кибернетические системы и их логико-математическое обеспечение предназначенное для решения всех тех задач, которые требуют интеллектуальных способностей человека. Искусственный интеллект ставит своей целью создание програмно-аппаратных средств ЭВМ позволяющих : 1) имитировать на ЭВМ отдельные элементы творческого процесса, 2) автоматизировать целенаправленное поведение роботов, 3) обеспечивать диалоговое общение с ЭВМ пользователей на языке их предметной области, создавать экспертные системы. В теорию искусственного интеллекта как научного направления входит теория программирования, включая теорию самих ЭВМ. Обобщающую концепцию искусственного интеллекта формулируют следующим образом: " под искусственным интеллектом подразумевается набор программных и аппаратных средств, использование которых должно было бы приводить к тем же результатам, к которым при решении данного класса задач приходит интеллектуальная деятельность человека" ( 17,167). К числу этого класса задач включают игру в шахматы, доказательство теорем, общение с человеком на естественном языке, перевод с одного языка на другой, способность программ к обучению и самообучению, автоматическую коррекцию, самоконтроль, наконец, способность вырабатывать новые знания и подготавливать их для принятия ответственных решений. На первый план выдвигается организация знаний в системах ИИ, организация диалового общения ЭВМ с человеком, создание систем гибридного интеллекта объединяющих мыслительные способности людей с возможностями ЭВМ.
Во всех прошлых технических устройствах связь человека с техникой была односторонней - от человека к машине. Обратная связь - от машины к человеку - или отсутствовала, или была весьма незначительна. В человеко-машинных системах человек и машина являются партнерами, решающие общую задачу. Для этого нужно организовать общение между человеком и машиной и спланировать совместную деятельность, корректируя ее продолжение в зависимости от полученных результатов.
Общение требует наличия языка общения, механизма перевода языковых сообщений на язык внутренних представлений об окружающем мире, находить в ЭВМ нужную информацию, умения согласовывать движения глаз с речевыми и текстовыми сообщениями, наличия специальных механизмов для построения умозаключений и организации диалога между человеком и машиной - интерфейса.
Интерффейсом называется комплекс технических или программных средств, которые использует человек для общения с техническим устройством и для сорряжения различных аппаратных средств между собой. В интерфейсах первого уровня, использующих стандартные формы ответов, общение происходит в режиме "меню", которое требует лингвистический процессор, обеспечивающий несложный синтаксический анализ реплик человека. Второй уровень общения для получения ответа надо найти в тексте соответствующе место и сформулировать ответ на вопрос, взяв из текста соответствующую фразу или ее кусок. Здесь процессор должен быть более мощным и строить содержательные связи между входящими в предложение словами. На третьем уровне общения поиск ответа связан с рассуждениями о пространстве и времени и о законах окружающей среды. Из этой системы с помощью знаний, содержащихся в тексте, получают новые знания.Четвертый уровень общения расширяет специальные механизмы для поиска релятивной информации. Что касается пятого уровня общения, то здесь привлекается не только текст, написанный или произнесенный на естественном языке, но и зрительная информация. Имеются и более высокие, например аллегорические уровни общения, но пока реализованы лишь первые три уровня общения. Для улучшения качества общения в человеко-машинных системах ближайшего будущего предполагается использовать развитые средства графики, а также речевой ввод-вывод.
Таким образом, искусственный интеллект не есть нечто, существующее независимо от естественного интеллекта. "Он является техническим, инструментальным продолжением последнего, усилителем интеллектуальных способностей" (19,9). В связи с этим возникает вопрос о соотношении естественного и искусственного интеллектов. Ответ на него не однозначен. Одни, составляющие лагерь технократических оптимистов, считают что различие между этими двумя видами интеллекта не качественное, а чисто количественное преодолеваемое в ходе стремительного развития пятого поколения ЭВМ. Другие - технократические пессимисты - напротив, утверждают, что между естественным и искусственным интеллектом лежит "китайская стена" не преодолеваемая ни в каком будущем в принципе. Чтобы найти правильное решение это й довольно таки сложной проблемы, посмотрим что общего имеется для естественного и искусственного интеллектов и в чем их различие.
Сходства естественного и искусственного интеллектов следует искать в тезисе что интеллектуальная деятельность имеет машинно-операционую природу. Такой тезис выдвинул Р. Декарт и в нем берет свое начало компьютерный оптимизм. Последний считают человека просто системой для обработки информации, а его мозг- машиной для мяса. Приверженцы создания искусственного интеллекта не видят никакого качественного различия между мозгом человека и ЭВМ. По их мнению здесь различие чисто количественное и если создать ЭВМ с числом запоминающих ячеек равному числу нейронов головного мозга ( примерно 16 млрд. клеток), то никакого качественного различия между человеком и ЭВМ не было бы.
Суть вопроса состоит в том, что мышление можно рассматривать как тип вычисления. Под вычислением в теории алгоритмов понимается последовательность сменяющих друг друга по определенному закону состояний алгоритмической системы ( или языка программирования). Каждое из этих состояний представляет собой две позиции - состояние программы и состояние памяти. Конечное состояние памяти называется результатом вычисления.Если говорить упрощенно, то вычисление - это определенная в соответствии с заданным алгоритмом последовательность операций, осуществляемая над входными данными, дающая в результате выходные данные - результат вычисления.
Э.Пилишин в книге "Вычисление и познание" пишет, что познавательная деятельность , осуществляемая мозгом, заключается в решении тех или иных задач через соответствующие операции и процедуры. Последние являются набором элементарных операций и состоящих из них алгоритмов. Но ЭВМ также реализуют программы - систему правил и алгоритмов которые могут быть представлены через соответствующие вычисления и вычислительные процедуры. Поэтому вычисление можно рассматривать как модель и даже эквивалент познания." То, что делает возможным для людей действовать на базе представлений,- пишет З.Пилишин, -это то, что они реализуют такие представления физически, как когнитивные коды, а их поведение есть причинная последовательность операций, выполняемых на основании этих кодов. Так как это то же самое, что делает компьютер, то мое заключение сводится к тому, что познание есть тип вычисления" (Цит.по: 17, 178). Но поскольку познание не является простым отображением объективной реальности, З.Пилишин выдвигает тезис о функциональных архитектурах - наборе определенным образом структурированных операций, выполняемых устройством, осуществляющим познавательный , интеллектуальный процесс. Таким устройством может быть мозг или компьютер.
Приведем еще одну точку зрения на сходство естественного и искусственного интеллектов.Она основывается на понимании интеллекта как единой двуязычной системы работа которой опирается на взаимодействие языка "симулятивных пространственно-предметных структур" и "символически-операторного языка речевых сигналов". Как отмечает Л.М.Веккер, если из этой системы исключить язык речевых сигналов, то "мы получим чисто перцептивный уровень познавательных процессов; если же из нее исключить еще и язык "симулятивных пространственно-предметных структур", то в итоге получится "общекодовая форма информационных процессов", осуществляемая в современных информационо-технических системах. И именно эта форма объединяет естественный и искусственнный интеллекты "на основе единого общекибернетического принципа организации" (20,199).
Таким образом, сходство естественного и искусственного интеллектов вытекает из утверждения о принципиальной идентичности элементарных операций человеческого и машинного"мышления". Процессы познания, чувственные образы могут быть более или менее адэкватно смоделированы и реализованы на дискретных электронных вычислительных системах. Такие системы по определенным параметрам вполне адекватны аналоговым устройствам. Правда некоторые сторонники этой точки зрения сомневаются в том, что человеческий мозг работает по принципу аналогового устройства и утверждают, что мышление можно моделировать на ЭВМ до некоторой степени адекватности, которая со временем буде возрастать а, следовательно, будет возрастать степень приближения искусственного интеллекта к естественному.
Итак, основной тезис, определяющий сходство естественного и искусственного интеллектов, заключается в возможности трактовки мышления как определенного типа вычисления. Этому тезису противостоит ряд положений, характеризующих качественное различие этих интеллектов.
Наиболее общий и пожалуй наиболее принципиальное различие между естественным и искусственным интеллектами имеет глубоко философский смысл. (Это подтверждает мысль о том, что связь искусственного интеллекта, компьютерного моделирования и распознавания образов с традиционными философскими вопросами очевидна.) Суть этого различия вытекает из философского понимания взаимоотношения различных форм движения материи, которые не только взаимосвязаны друг с другом, но и качественно различны. С философской точки зрения поэтому нельзя более высшие формы движения материи ( в данном случае - социальной, к которой принадлежит человек с его сознанием) сводить к более низшим (механической, физической, наконец, биологической), к которым могут принадлежать процессы, протекающие в компьютере.
В этом случае важным является различать вопросы о том, может ли машина мыслить и о том, можно ли искусственным путем создать мыслящий объект. По нашему мнению, если неразумная природа создала человеческий разум, то почему последний не может создать мыслящий объект? Но это будет уже не модель человеческого мозга, а искусственно созданный мозг. Однако искусственный интеллект не синоним искусственного разума. Модель же мозга, а именно о моделировании человеческого мозга и его мыслительных способностей идет речь, всегда будет отличаться от естественного интеллекта как модель от модулируемого объекта.
Далее следует указать на различие между естественным и исакусственным интеллектом по происхождению. Интеллектуальные способности человека есть результат биологической и социальной эволюции. Уникальность человека состоит в том, что он характеризуется единством законов природы и законов общества. Природа человека биосоциальна, сущность человека социальна, это совокупность устойчивых общественных отношений определяющих внутреннюю логику развития человека. Человек как живой организм возникает естественно, путем дифференциации единого материального зародыша. Искусственный интеллект есть результат научно-технического развития. Он возникает путем искусственного соединения зараннее подготовленных и изначально различных деталей. Поэтому искусственный интеллект является именно искусственным, т.е. вторичным, производным по отношению к деятельности человека. В данном случае речь идет о различных источниках происхождения определяемых качеством различных форм движения материи.
Мышление - уникальная способность человека, возникшая на основе активно-преобразовательного отношения человека к объективной и субъективной реальности. Оно связано с телесностью человека, его эмоциями, чувствами несет с собой определенную психологическую окраску. Никакого сознательного отношения к миру, никаких эмоций и чувств у машины нет. Компьютерное мышление представляет собой имитацию интеллектуальной деятельности человека. "Цифровой компьютер, - пишет Х.Дрейфус, - не человек. У компьютера нет ни тела, ни эмоций, ни потребностей. Он лишен социальной ориентации, которая приобретается жизнью в обществе, а именно она делает поведение человека разумным." (18,11).
Человек способен мотивированно, т.е. целенаправленно, в зависимости от конкретных условий изменять программу своих действий, притом так, что новая программа строго логично не вытекает из старой. Главное в процессе мышления - умение ставить задачу и самопрограммироваться на ее решение. ЭВМ может решить ту или иную задачу или проблему, но он не может ее поставить.
Характеризуя различия между естественым и искусственным интеллектом, следует указать на то. что мозг человека оперирует понятиями, суждениями имеющими диалектический характер, в то время как машина оперирует вычислениями по законам формальной логики. Интеллект человека связан с абстракциями, лишенными чувства нагладности что отсутствует у ЭВМ. В работе человеческого мозга большое значение имеют бессознательная деятельность,интуиция, творчество которые не могут быть формализованы а поэтому представлены в виде компьютерных программ.
Можно отметить еще некоторые отличия естественного интеллекта от искусственного.Мозг - принципиально аналоговое устройство. Психика является органически целым процессом. Здесь нет отделенных друг от друга частей. Компьютер же - дискретно-цифровое устройство, и он может лишь отчасти моделировать более сложную аналоговую деятельность. Техника и мышление основаны на принципиально различных типах взаимосвязей между их компонентами. Мышление человека функционирует на основе сознательного и бессознательеного. Психика изначально включена в непрерывное и динамичное взаимодействие челровека с миром, является процессом этого непрерывного, постоянно изменяющегося и развивающегося взаимодействия. Отражая непрерывную изменчивость условий жизни психика является предельно практичной и непрерывной. Что касается компьютера, то он работает с перерывами, его можно включить или выключить.
В силу указанных обстоятельств хотя множество действий, которые традиционно были связаны с человеческим интеллектом, уже переданы ЭВМ и ими выполняются,за человеком остается некое истинно человеческое интеллектуальное поле.По всей видимости " человеческий интеллект можно будет определить как нечто, что нельзя сделать с помощью машин" - пишет Г.Кан (21,202). То интеллектуальное, что со временем перейдет машине, перестает быть таковым и становится искусственным. То, что является интеллектуальным, остается вне функций ЭВМ. Машина не решает за нас человеческих проблем - любви и дружбы, радости и печали.
В создании искусственного интеллекта как модели некоторых свойств и действий естественного интеллекта кибернетика достигла больших успехов. Созданы программы- "эксперты", формирующие общие правила для решения частичных задач,самообучающие программы, диагностические экспертные системы, программы для различного рода игр (морской бой, шахматы), проводятся большие работы в области "машинного зрения", т.е. распознавания образов. Но усложнение интеллектуальных функций ЭВМ имеет свои границы, связанные не только с огромной сложностью и "тонкостью" устройства человеческого мозга как биологического феномена - продукта двух миллионов лет эволюции, но и социальной природой естественного интеллекта. Поэтому техника, даже самая совершенная, всегда была и будет лишь средством деятельности человека, который определяет цель функционирования техники.
Вместе с тем, развитие техники идет в направлении все большей замены трудовых функций человека техническими устройствами. Это и является смыслом научно-технического прогресса.


4. Технический прогресс и его
закономерности.
Что такое технический прогресс ? По каким параметрам можно определить состояние техники того или иного периода истории общества, новизну технического устройства или, другими словами, каков критерий технического прогресса? Ответы на эти вопросы отличаются большим разнообразием.
Один из таких ответов сводится к утверждению, что "производительность труда, ее повышение являются важнейшим критерием технического прогресса." (22,221). С этим на первый взгляд очевидным положением нельзя согласиться хотя бы уже потому, что как известно большей производительности труда можно достичь не только с помощью более совершенной техники, но и посредством интенсификации труда и улучшения его организации.
Выдвигается ряд других показателей уровня технического прогресса - масштабы используемых материалов и процессов, уровень рациональности конструкций и соответствие выполняемых техникой функций, ее трудоемкость , надежность,интенсификация информационных процессов и др. Имеется попытка представить в качестве критерия технического прогресса совокупность различных показателей. Именно в этом ключе утверждение о том, что "прогрессивность техники должна определяться не отдельными, обособленными друг от друга показателями, а системой критериев...В итоге наиболее прогрессивна та техника, которая обеспечивает максимально возможное и рациональное в каждых данных условиях использование внешней природы соответственно потребностям людей и общества."(22,227).
Не трудно заметить, что все перечисленные критерии технического прогресса акцентируют внимание преимущественно на технико-технологическом аспекте этого процесса и оставляют в тени, а порой и прямо игнорируют, его социальную сущность, не подчеркивают, что технический прогресс существует не сам по себе, а является составной частью общественного прогресса. Общую методологическую установку при определении критериев технического прогресса можно сформулировать так: определение критерия технического прогресса должно исходить не из возможностей выяснения того или иного уровня развития чисто технико-технологических показателей, а из отношения наличествующей техники к человеку и обществу в целом, технический прогресс имеет смысл лишь в соотнесении с человеком, с тем, что этот прогресс дает человеку.
В целом характеристику технического прогресса можно представить следующим образом. Содержание технического прогресса состоит в развитии техники от ее низших видов к высшим, реализуемом на различных уровнях - на уровне поступательного развития всей совокупной техники на протяжении всей ее истории, на уровне отдельных ее отраслей и видов техники. наконец, на уровне отдельного предприятия и технических устройств. Но переход от менее к более совершеной технике, осуществляемой в процессе человеческой деятельности, не самоцель. Человек замещает свой труд работой техники с единственной целью - как можно больше освободить себя от тяжелой рутинной работы, увеличить степень свободы своих действий. Поэтому сущность технического прогресса состоит в замене труда человека работой машины с целью увеличения степени свободы человека. Этот процесс, реализуемый в ходе деятельности людей, является закономерным.
Вопрос о законах развития и функционирования техники, т.е. о законах технического прогресса, является дискуссионным. В одних случаях при этом в явной или скрытой форме отрицается наличие собственных законов технического прогресса. К примеру утверждается, что промежуточное положение техники между природой и обществом делает ее подчиненной, с одной стороны, законам природы, а с другой - законам общественного развития чем и определяется логика технического развития. Так, примеру. Г.Н.Волков утверждает, что " эта логика целиком обусловлена промежуточным положением техники, ее взаимосвязью с человеком и природой" (23, 36).
Действительно, техника занимает промежуточное положение между обществом и природой. Она имеет естественную и общественную основу.
Техника создается на основе практического использования законов природы. Нет ни одного действующего технического устройства, которое бы по своей конструкции противоречило законам природы. Попытки пренебречь законами природы приводили лишь к созданию "технических устройств" вроде вечного двигателя.
Несомненно также, что на развитие техники, поскольку она общественный феномен, влиряют закономерности общественного развития. Именно они определяют темпы и масштабы, цель и характер технического прогресса.
Но закономерности развития природы и общества ни в коем случае не являются закономерностями развития техники. На основе органического сплава природного и социального образуютя внутрернние законы развития техники. Эти законы имеют весьмя своеобразный характер, являясь как бы итогом синтеза объективных законов природы и целей субъективной деятельности человека.
В работах многих авторов дается различная система законов технического прогресса - внутренних законов технического прогресса и законов взаимодействия техники с различными общественными явлениями; законы, связанные с изменением принципа технического устройства, используемых источников энергии и применяемых материалов; законы общие и стадиальные и т.д. В конце концов делается вывод, что "закономерности и - тем более - законы техники весьма многочисленны. Любая попытка охватить их достаточно полно заведомо безуспешна. Поэтому необходима некоторая классификация. Но предварительно следует отметить, что техника образует специфический , относительно самостоятельный класс общественных явлений, что, в свою очередь, позволяет ставить вопрос о существовании соответствующего специфического класса законов и закономерностей, которые свойственны технике и не относятся к другим общественным явлениям"(22, 164).
При анализе технического прогресса можно установить, что он подчинен большому количеству законов ,которые можно разбить на три больших группы. Первая группа - это законы, которые существенно определяют выполняемые техникой в обществе функции, основную направленность, тенденции, характер и темпы технического прогресс. Это - общие закономерности технического прогресса. Вторая группа - это законы, связанные с природной основой, с прогрессом в техническом использовании естественных процессов и материалов. Это- специфические закономерности развития техники как средства человеческой деятельности. Наконец, третья группа - это законы взаимосвязи техники с другими общественными явлениями и обществом в целом. Это - внешние закономерности развития техники. В силу действия всех этих законов технический прогресс представляет собой закономерный процесс, логика которого определяется взаимодействием этих трех классов законов, поскольку общее и особенное существует лишь в отдельном, через отдельное. Более того, существующая логика технического прогресса корректируется действием общесоциологических законов поскольку техника как хотя и специфическое, но все же социальное явление. Однако при анализе закономерного характера технического прогресса вполне правомочно выделение вышеназванных трех групп законов.
Что касается внешних закономерностей технического прогресса, то в этом случае техника рассматривается как социальное явление о чем речь будет идти в дальнейшем. Анализируя же технику как искусственно созданные средства деятельности людей, мы обращаем внимание на общие и специфические законы технического прогресса. В этом аспекте рассмотрим прежде всего общие закономерности технического прогресса, т.е. законы, которым подчинена вся техника на всех стадиях технического прогресса.
В качестве важнейшего общего закона развития техники выступает связь технических изобретений и их применения с практической необходимостью. Именно в процессе практической человеческой деятельности возникают потребности, которые уже не могут быть удовлетворены наличными техническими средствами. Возникает противоречие между растущими потребностями и возможностями их удовлетворения существующим уровнем техники. Это противоречие выступает в качестве основной причины развития техники. При этом противоречие между техническими задачами и техническими возможностями имеет объективный характер, поскольку состояние наличной техники и технологии, объективные условия общественного развития вынуждают людей развивать технику в определенном направлении.
В качестве другого общего закона технического прогресса можно назвать объективную последовательность этапов развития техники в ходе которых техника усложняется поскольку она все в большей степени замещает человека, его трудовые функции.
Проблема определения основных этапов технического прогресса решается неоднозначно. С.В.Шухардин, отмечал, что разработка научно обоснованной периодизации технического прогресса, т.е. деление процесса развития техники на основные, качественно отличающиеся друг от друга периоды, имеет большое значение так как знание этих периодов позволяет научно подойти к пониманию развития техники. Вместе с тем, писал он, " до сих пор эта проблема не решена и вызывает острые и горячие обсуждения. В настоящее время имеются разные точки зрения о принципах периодизации в историко-технических исследованиях." (5,99).
Известно, что К. Маркс, положив в основу периодизации технического прогресса орудия производства и тот двигатель который приводит их в действие, так охарактеризовал прогресс техники: "Простые орудия, накопление орудий, сложные орудия; приведение в действие сложного орудия одним двигателем - руками человека, приведение этих инструментов в действие силами природы; машина; система машин, имеющая один двигатель; система машин, имеющая автоматически действующий двигатель, - вот ход развития машин"(24,156).
Эту характеристику развития техники в отечественной литературе обычно совмещали с марксовой схемой деления истории общества на отдельные общественно-экономические формации хотя логические основы такого членения технического прогресса совершенно не определены. Так, неясно чем отличаются, к примеру, сложные орудия труда рабовладельческого общества от феодального. В этом ключе дана периодизация технического прогресса в известном труде "История техники" (М.,1962), написанном А.А.Зворыкиным и др. Определенный отход от такого членения технического прогресса сделан в двухтомнике "Техника в ее историческом развитии" (М.,1970, 1982), написанном научными сотрудниками ИИЕиТ АНСССР.
Есть попытки в основу периодизации технического прогресса положить материал из которого изготовлялись используемые орудия труда. Отсюда названия - каменный, бронзовый, железный "век", хотя 99,9 % всего времени существования человечества приходится на период или "век" каменных орудий.
С распространением машин важнейшим фактором становится энергетика и в основу периодизации технического прогресса стали класть наиболее распространенный в данный период вид энергии: отсюда "век" пара, "век" электричества, "век" атомной энергии. Но подобная периодизация не охватывает логику развития основного элемента технического прогресса - рабочих машин.
Наконец, иногда технический прогресс рассматривается с точки зрения изменения функций орудий труда как производственных органов общественного человека (С.С.Товмасян ). В этом случае выделяют следущие периоды или эпохи развития техники: эпоха ручных орудий труда, эпоха механизации, эпоха детерминированных автоматизированных систем ( где функции физического труда по контролю технологического процесса передаются блоку управления) и эпоха недетерминированных самоуправляющихся и самосовершенствующихся систем ( где технике передается ряд логических операций). Здесь также отсутствует ясность в логическом основании периодизации технического прогресса.
"Главное в том, - писал С.В.Шухардин,- чтобы правильно выбрать основание для деления на характерные периоды развития изучаемого явления в области техники. Таким основанием должен быть наиболее важный и существенный принцип данного явления, который определяет и влияет на все остальные связи. Кроме того, необходимо, чтобы выбранное основание было главным во всех периодах"(5,101).
Таким признаком есть все основания считать способ соединения человека с техникой в процессе производства или, другими словами, соотношение функций человека и машины в совокупном рабочем механизме. В соответствии с этим основанием членения технического прогресса на отдельные его этапы можно выделить три таких этапа - ручные орудия труда, машина, автомат. Следует заметить, что такая периодизация технического прогресса в основном соответствует цивилизационному подходу к общественому прогрессу когда последний представляется как последовательная смена различных типов цивилизаций: аграрно- ремесленную цивилизацию сменила существующая ныне индустриальная, которая уже сегодня в ряде наиболее развитых стран начала движение к информационной.
Первый этап технического прогресса - период ручных орудий труда. Он охватывает огромный, самый продолжительный отрезок времени человеческой истории - от возникновения простейших орудий труда до их превращения в машины. На этом орудийном (иногда его называют инструментальном) этапе способом соединения человека с техникой был ручной способ, когда человек орудием труда непосредственно воздействовал на предмет труда. Движения человека определяли движения орудия. Здесь наблюдается "жесткий" тип связи человека с орудием труда, когда человек, по словам К.Маркса, срастался с орудием настолько же тесно как улитка с раковиной. Ручная техника не замещает человека в процессе его трудовой деятельности, а лишь дополняет и усиливает функции его естественных органов. Орудия труда создаются по аналогии с естественными органами человека. Правда, ручные орудия труда не просто копировали естественные органы человека, а создавались как их продолжение для усиления воздействия человека на предмет труда. Используя свои физические и духовные силы и потенции, человек сам выполнят все основные трудовые функции и выступал в качестве специфического "живого механизма". По мере развития орудийной техники частичные распределения функций между человеком и техникой изменялись, однако эффективность трудовых усилий человека повышалась незначительно поскольку труд оставался ручным.
Второй этап технического прогресса - машинный. На этом этапе основная трудовая функция человека - работа инструментами, приведение их в движение, управление ими передается машине. По мере развития машин человек передает им все больше и больше своих трудовых функций в силу чего сами машины усложняются и структурное подобие техники человеку сменяется функциональным. Однако деятельность человека, его движения определяются и регулируются работой машины и человек по существу превращается в живой придаток машины.
Безусловно, характер труда изменился, из ручного он стал механизированным что привело к росту производительности труда. Но человек по-прежнему остается необходимым звеном производственного процесса. Он принимает непосредственное участие в этом процессе в качестве четвертого (управляющего) звена машины.
Третий этап технического прогресса- автоматизация. Под автоматизацией понимается применение технических средств для полной или частичной замены участия человека в процессах получения, преобразования, хранения, передачи и использования материалов, энергии или информации. Техника замещает человека в выполнении им функции управления технологическим процессом, оставляя за собой лишь контроль за работой техники, ее наладку и настройку, которые все в большей степени по мере развития автоматизации переходят к самой технике. Человек выходит из непосредственного технологического цикла и становится рядом с ним.
Таким образом, если на первом этапе технического прогресса движения человека определяют движения орудий труда, то на втором этапе движения машины определяют движения человека, а не третьем - техническое устройство функционирует по установленной программе без непосредственного участия человека. Следовательно, прослеживая основные этапы технического прогресса мы убеждаемся, что в ходе этого прогресса происходила постепенная передача технике функций работающего человека.
В процессе непосредственного труда человеком выполняются следующие основные трудовые функции:
1. Транспортная - перемещение сырья или заготовки к рабочему месту и продукта труда от рабочего места.
2. Технологическая - изменение (формы, состава, структуры) предмета труда.
3. Энергетическая - преобразование или трансформация энергии.
4. Контрольно-управляющая - контроль за выполнением всех других трудовых функций. Эта функция является связующим звеном между процессом труда и логическим аппаратом человека.
5. Логическая - получение, запоминание, отбор, преобразование, хранение и выдача информации.
Весь смысл развития техники состоит в том, что человек последовательно передает нетворческие стороны отдельных трудовых функций техническим устройствам для повышения эффективности своих трудовых действий . Поэтому основным законом технического прогресса выступает передача нетворческих сторон трудовых функций от естественных органов человека техническим средствам с целью повышения производительности труда.
Этим определяются основные этапы развития техники на каждом из которых связь человека с техникой эволюционирует в сторону все большей свободы человека от технологического процесса которая достигает своего апогея на этапе автоматизации. Поэтому всю историю техники можно рассматривать как процесс движения техники в сторону автоматизации, т.е. как предысторию автоматики. "Современная автоматика,- пишет Г.Н.Волков,- делает особенно очевидным тот факт, что вся история техники была предысторией автоматики, что основная линия технического развития с момента появления первых орудий труда и до сего времени заключается в развитии автоматизма техники путем постепенного вытеснения человека из непосредственного процесса производства, путем опредмечивания в технических конструкциях тех или иных трудовых функций человека" (23,49-50). Из этого следует, что ключ к пониманию технического прогресса лежит в логике развития автоматизации.
Каждому этапу технического прогресса соответствует определенный технологический способ производства, который характеризует не социальную, а техническую сторону производства. Технологический способ производства - это определенные формы и методы организации производства, способ соединения производителей со средствами производства а также те отношения, которые складываются между людьми в непосредственном производственном процессе. Каждый этап технического прогресса является логическим продолжением предшествующего развития техники. Вполне естественно, что машина возникает после того, как ручные орудия труда в своем развитии прошли определенный путь от примитивных орудий - инструментов до сложных, приводимых в действие силами природы. В свою очередь автоматическая система машин не могла возникнуть без возникновения рабочих машин и их дальнейшей эволюции от паровых до электрических. Поэтому можно выделить еще один закон технического прогресса - закон преемственности в развитии техники. Суть его заключается в том, что любой уровень технического прогресса, являясь продуктом предшествующей деятельности людей, служит отправным моментом для их дальнейшего технического творчества. Так, элементы машинной техники зародились в мануфактурном производстве. Это повлекло за собой рост численности рабочих, увеличение размеров производственных строений, объема оборудования, массы применяемях материалов и подготовило условия для начала автоматизированного производства.
Технический прогресс как всякий вид прогресса имеет различные формы своей реализации. Выделяются периоды бурных технических преобразований, которые занимают сравнительно с предшествующим техническим развитием малый отрезок времени. Эти периоды обычно называют техническими революциями. От них отличны относительно продолжительные периоды на протяжении которых осуществляются отдельные технические усовершенствования в имеющихся технических средствах, появляются новые технические устройства существенно не отличающиеся от существующих. Первой технической революцией было изобретение лука и стрел а затем освоение сверления и шлифования, после которой наступил длительный эволюционный период усовершенствования этих технических и технологических нововведений. Революционные и эволюционные периоды характерны и для дальнейшего развития техники.Так. С.Лилли в своей книге "Люди, машины и история" показал, что примерно до 3000 года до нашей эры происходили бурные преобразования в технике вслед за которыми вплоть до 2500 года но нашей эры наступил период характеризующийся не фундаментальными нововведениями, а скорее совершенствованием техники и ростом ее массы. Подобные факты дают основание говорить еще об одном законе технического прогресса - законе диалектического единства эвллюционной и революционной форм технического прогресса, количественных и качественных ее формах. Критерий качественного изменения технического прогресса лежит в коренном изменении соотношения между личными и вещными элементами совокупного рабочего механизма. Это изменение соотношения являются следствием последовательной передачи рабочих функций человека технике что приводит к коренному изменению технологического способа производства.
Эволюционная и революционная формы присущи не только всей совокупной технике, но и процессу развития отдельных технических средств. Этот процесс содержит не только создание и внедрение новой техники в практику, но и ее распространение вширь взамен устаревшей, отсталой техники а также улучшение ее показателей. К примеру, в 1876 году немецкий конструктор Н.Отто изобрел четырехтактный двигатель внутреннего сгорания. Это была революция в технике транспорта. Применение этого двигателя в различных средствах транспорта - автомобиле, моторной лодке, мотоцикле и др. было эволюционным развитием техники транспорта. Создание одноместной моторной повозки в 1885 году немецким изобретателем Г.Даймлером было революционным шагом в развитии транспортной техники. В дальнейшем автомобили претерпели и претерпевают ныне различные совершенствования, что является эволюционным периодом развития этой отрасли техники.
Чем новее и более совершенствованнее техника тем выше темпы ее развития. Все боле сокращаются сроки разработок и использования технических средств, все быстрее наступает их моральное старение. Эта тенденция настолько ярко выступает в истории техники, что ускорение темпов технического прогресса можно назвать законом. Этот закон - одно из конкретных проявлений возрастания темпов общественного прогресса, которое, в свою очередь, определяется возрастанием темпов развития объектов по мере усложнения их организации, Чем более сложную структуру имеет система тем она находится на более высокой стадии своего развития. Ассимилируя достижения предшествующего развития, начиная свою эволюцию с более основательной базы она естественно имеет более богатую основу и поэтому более быстрые темпы этого развития.
Ускорение особенно характерно для современного этапа технического прогресса где огромную роль играет вычислительная техника использование которой позволяет экономить главнейший фактор технического прогресса - время. "Объективный процесс развития техники, ее направленность таковы, - пишет Р.Ф.Абдеев, - что, как в передаче сообщений, так и в вычислительных и других операциях - всюду достигается многократное сокращение временных интервалов, затрачиваемых на выполнение этих операций в контуре управления. Это и приводит к ускорению темпов" (35,85). Ныне происходит резкое усиление интенсификации информационных процессов, возрастает их скорость, увеличивается объем передаваемой информации, ускоряется процесс ее обработки на ЭВМ, увеличивается объем добываемой новой информации которая наглядно отображается человеку в процессах управления.
Ярко проявляясь сегодня, закон ускорения темпов технического прогресса действует на протяжении всей ее истории. Так, если от создания шельского рубильника до мустьерского орудия прошло примерно 600-700 тысяч лет, то от мустьерского орудия до специализированного инструмента - примерно 50 тысяч лет а от этого инструмента до машины 800-900 лет, от машины до автоматизации этот срок сократился до 100-120 лет.
В наше время ускорению технического прогресса способствует сокращение временного интервала между открытием или изобретением и их техническим применением. Раньше открытия новых явлений в естествознании получали свое отражение в технике через десятилетия или даже столетия. Теперь как правило (за досадным исключениями имеющими субъективные причины) это происходит в течение сравнительно короткого и все сокращающегося срока. Временной разрыв между открытием или изобретением и их практическим применением становится все меньшим. Если между появлением изобретения бумаги и его практическим использованием прошло 1000 лет, то для фотографии - 102 года, паровой машины - 80, лет, телефона - 56 года, самолета - 20 лет, телевидения - 5 лет, транзисторной техники - 3 года, лазеров - 0,5 года, ФАКСов - всего 3 месяца.
С начала 20 века сроки внедрения отдельных крупных открытий сократились более чем в 2 раза, а опытно-конструкторских разработок более чем в 3 раза.
Ускорение темпов технического прогресса наглядно можно выразить так. Представим себе общественный прогресс, возраст которого примерно 600 тысяч лет, в виде марафонского бега на 60 км. Большая его часть пролегает по весьма трудному пути, через рощи и девственные леса. В самом конце после 58 -59 км. мы находим первобытные орудия, а на последнем километре - признаки земледелия. "За 200 метров до финиша, - пишет швейцарский инженер Г.Эйхельберг в книге "Человек и техника", - дорога, покрытая каменными плитами, ведет мимо римских укреплений. За 100 метров до финиша наших бегунов обступают средневековые городские строения. До финиша остается еще 50 метров; там стоял чел
овек, умными и понимающими глазами следящий за бегом - это глаза Леонардо да Винчи. Осталось 10 метров! Они начинаются при свете факелов и скудном освещении масляных ламп. Но при броске на последних пяти метрах происходит ошеломляющее чудо: свет заливает ночную дорогу, повозки без тяглового скота мчатся мимо, машины шумят в воздухе и пораженный бегун ослеплен светом прожекторов репортеров, радио и телевидения" ( Цит.по: 26,38-39).
Рассмотрение техники как средства деятельности людей позволяет сделать вывод не только о том, что развитие техники можно понять лишь в системе "человек-техника", но и о том, что это развитие является закономерным процессом, определяется совокупностью законов, среди которых важную играют внутренние специфические законы. Эти законы возникают на основе внутренних противоречий техники, которые формируются в процессе взаимодействия общества с природой. Поэтому специфические внутренние закономерности развития техники относятся к системе самой техники и не могут быть подменены какими-нибудь другими.

5. Внутренние закономерности
развития техники.
Развитие техники определяется действием ряда причин, обусловливающих закономерный характер этого процесса. Существует целый ансамбль таких причин различных по своему значению. Еще Аристотель писал, что "о причинах говорят в различных значениях, и среди самих причин одного и того же вида одна по сравнению с другой бывает первичной или вторичной"(27, 147). В связи с этим он отличал производящую причину, "то что делает," от формальной причины, "то, что заставляет делать". Это дает основание выделить непосредственные и опосредованные причины развития любых явлений в том числе и техники, или источники и движущие силы этого развития.
Источники развития - это непосредственные причины, например, труд и его технологическое разделение. Движущие силы - это такие причинные факторы развития техники, которые воздействуют на это развитие опосредовано, через источники развития, например, противоречие между старыми и новыми техническими идеями. Движущие силы играют роль своеобразных катализаторов, воздействующих на направленность и темпы технического развития. Между источниками и движущими силами развития нет непроходимой грани, те и другие являются причинами развития техники. Но источники этого развития вытекают из внутренних противоречий свойственных технике, а движущие силы- из внешних или побочных факторов.
Одними из таких внутренних противоречий является противоречие между совершенствованием техники и теми техническими принципами, на основе которых было создано данное техническое устройство.
Дело в том, что в процессе создания техники законы природы, открываемые естественными науками, трансформируются техническими науками в определенные технические принципы. После создания техники изобретатели и рационализаторы в процессе ее функционирования совершенствуют существующую технику. Пока до полного использования технического принципа еще далеко, существует большой простор для технического творчества. Однако постепенное совершенствование наличных технических средств приводит к тому, что происходит постепенное приближение к максимальному использованию тех законов природы, на основании которых были выработаны определенные технические принципы и функционирует существующая техника.Таким образом простора для технического творчества остается все меньше или его совсем нет в силу чего любые технические усовершенствования малоэффективны и даются все с большим трудом. В это время старые технические средства достигают своего полного расцвета, имеют по сравнению с техникой предыдущего периода развития больший КПД. Но в дальнейшем этот коэффициент растет все более замедленными темпами со все возрастающими усилиями. В силу этого целесообразность дальнейшей работы в этом направлении отпадает. Идут поиски новых технических принципов, которые бы открывали новые возможности для технического творчества. Таким образом, старая техника отмирает в момент своегонаивысшего расцвета. Следовательно, изучая КПД технических средств мы можем предвидеть момент их дальнейшей качественной замены более совершенной техникой.
В этом отношении представляется интересным исследование Е.И.Гагариным изменения величины КПД автомобильных двигателей с 1895 по1955 годы. Эти исследования показывают, что резкий рост КПД этих двигателей в первые два десятилетия, обусловленный усовершенствованием конструкций, постепенно стал замедляться, что объясняется моральным старением самих поршневых двигателей. Повышение их КПД требовало с течением времени все больших затрат и постепенно теряло смысл. Формируется необходимость замены поршневых двигателей другими, например, газовыми турбинами с более высоким КПД, меньшим числом деталей, весом и габаритом, более совершеной динамикой, возможностью применять любые виды жидкого и газообразного топлива, с легкостью запуска при низких температурах, простотой управления и другими преимуществами перед поршневыми автомобильными двигателями. "Примеры из истории техники показывают, - заключает Е.И.Гагарин, - что когда рост величины качественных показателей машины прекращается или становится ничтожным, а потребность в продукте, обеспечиваемая этой машиной, неуклонно возрастает, то назревшее противоречие разрешается введением новой, более совершенной машиной"(28,92). Общая закономерность развития КПД различных машин может быть изображена графически следующим образом ( рис.2).

<< Пред. стр.

страница 2
(всего 5)

ОГЛАВЛЕНИЕ

След. стр. >>

Copyright © Design by: Sunlight webdesign