LINEBURG


<< Пред. стр.

страница 8
(всего 11)

ОГЛАВЛЕНИЕ

След. стр. >>

Одна из основных проблем в освоении виртуальной реальности состоит в том, чтобы эти частично совпадающие (перекрывающиеся) данные были удовлетворительны в информационном отношении. Диссонанс восприятия, когда сигналы разноречивы, может вызвать дезориентацию, растерянность и даже болезнь. Визуальные сигналы вовсе не обязательно обусловлены стереоскопическим видением. Линии перспективы, тени световых бликов, освещения и фактуры могут придать двумерной графике трехмерный вид. Современная технология виртуальной реальности - это ответвление компьютерной графики, повлиявшей на все - от составления карт до телерекламы. Компьютерная графика открывает широчайшие возможности для манипуляции трехмерными образами, но при этом требует огромных затрат энергии.
Современная технология виртуальной реальности начинается с попытки соединить визуальное восприятие с восприятием движения и звука. Ее первоначальное применение предшествует изобретению компьютера. В настоящее время виртуальная реальность отождествляется с более глубоким подходом, чреватым многими препятствиями. Требуются, как минимум, головной дисплей и перчаточное устройство (или другие средства управления виртуальными объектами). Полное погружение требует от пользователя надеть сенсорный костюм, передающий данные о движениях в компьютер.
Головной дисплей - это два очень маленьких видеомонитора, установленных так, что каждый из них находится перед соответствующим глазом; на него смотрят через специальные широкоугольные линзы. Размещение этих устройств в маске или шлеме таково, что глаза могут принимать изображение, которое мозг идентифицирует как трехмерное. Некоторые дисплеи снабжены наушниками, создающими звуковую среду. Ранние головные дисплеи были тяжелыми и неуклюжими, более поздним стремятся придать форму легкого шлема, создающего уникальный эффект присутствия в виртуальном пространстве. Другие методы, как, например, специальные электронные очки, скорость изображения в которых сопоставима с видеодисплеями, позволяют пользователям работать в реальной среде, одновременно обращаясь к изображениям в среде виртуальной.
Поиск более тесного взаимодействия с виртуальными объектами толкает на поиски средств управления ими. Создание перчаточного устройства представляет собой резкий выход за пределы привычных джойстиков, "мышей" и т.д. Оно дает пользователю возможность буквально проникать в киберпространство и изменять его. Перчатка может оценивать положение и изгиб каждого пальца. Это обеспечивается использованием особых оптико-волоконных нитей, фиксирующих количество света, проходящего через каждую нить, или, напротив, измеряющих переменное электрическое напряжение в цепи.
Еще один важный элемент системы погружения - это устройство слежения за положением, создающее классическую декартову трехосную систему. Это устройство может работать с помощью либо электромагнитного поля, либо ультразвуковых или инфракрасных лучей. При использовании электромагнитных полей фиксатор позиции получает последовательные сигналы о положении относительно трех декартовых осей. Это дает пользователю так называемые шесть степеней свободы. Лучевые фиксаторы для определения позиции используют простые волны в пределах прямой видимости и тригонометрические исчисления. Одно устройство слежения контролирует движение головного дисплея, а другое - каждую перчатку или иную часть тела, которую пользователь сочтет нужным поместить в киберпространство. У каждого из этих устройств, однако, есть жесткие пределы эффективности.
9.4.3. Способы существования виртуальной
реальности
Наиболее очевидным путем развития виртуальной реальности является индустрия развлечений. Такие пассивные масс-медиа, как кино и ТВ, уже постепенно вытесняются примитивными интерактивными формами. Только за 1992 год доход от первого проката кинокартин по всему миру составил около 5 миллиардов долларов, тогда как продажа видеоигр интерактивного характера дала прибыль в 7 миллиардов. В настоящее время на рынке немало и того, что можно назвать "пассивными" или околовиртуальными играми. Как правило, это отростки военной технологии летных тренажеров: они-то и составили быстрее всего растущую часть индустрии развлечений.
Сравнительно недавно предложены концепции виртуальных библиотек и музеев. В качестве доступа к книгам и другой печатной продукции библиотеки будет использоваться телеприсутствие. Пользователь сможет перемещаться внутри визуального изображения книжных полок, находить то, что ему нужно, и сразу погружаться в чтение, а при наличии разрешения делать копии.
Концепция виртуального музея слегка иная. Смитсоновский музей в Вашингтоне располагает коллекцией более чем в миллиард единиц хранения. Одномоментно в нем может быть выставлено не более двух процентов от общего числа экспонатов. Виртуальный музей даст пользователям возможность увидеть любой экспонат коллекции в его натуральном, трехмерном виде, а также, в идеале, все тематически связанные с ним экспонаты и материалы. Однако эта концепция, предполагающая полное погружение, требует дисплеев более высокой разрешающей способности, чем те, которые пока нам доступны.
Наконец, большое применение виртуальная реальность находит и найдет в бизнесе: при обработке информации, оценке оптимальной цены и рынка сбыта, уменьшения себестоимости товара и т. п. Все процессы бизнеса объединяются в одну информационную сеть, ключ к которой - у шефа компании по информации.
Каковы же перспективы виртуальной реальности? Предпочтительная метафора для новой парадигмы нам знакома - это театр, искусство, заставляющее поверить в свою правдивость. "В киберпространстве в рамках театральной парадигмы, - пишет Р. Уолсер, - у зрителей всегда есть виртуальные тела, и они всегда играют роли виртуальных существ, именуемых характерами. Попав в киберпространство, вы каким-то образом становитесь связанными с виртуальным телом, которое вы контролируете посредством движений вашего физического тела. Роль характера играет интеллект - человеческая или искусственная программа понимания".
Другой исследователь, Г. Фольц, пишет о новом способе раздела мира путем распределения его ценностей. Он предвидит создание "киберкланов" - избранных групп людей, всей своей жизнью включенных в киберпространство.
Доктор У. Брикен из ХИТ-Лаборатории озабочен отсутствием строгой терминологической базы в исследованиях по философии виртуальной реальности. Если подходить к этому вопросу строго, то виртуальная реальность вряд ли будет когда-либо сильно походить на реальный мир. Человеческое воображение стремится не повторить этот мир, а заполнить его лакуны (пустоты). Подобно другим ученым, У. Брикен сформулировал свои правила виртуальной реальности:
* Психология - физика виртуальной реальности.
* Наше тело - интерфейс.
* Знание - это эксперимент.
* Факт - это среда.
* Пространство и время подлежат изучению.
* Реализм необязателен.
9.4.4. О философии виртуальной реальности и
киберпространства
Такие современные философы, как Нельсон Гудмэн и Ричард Рорти, считают все миры - не только мир рассказов и фильмов - возможными символическими конструктами. Наука, религия и искусство предлагают свои версии миров, которые по-разному создаются, проверяются и усваиваются, - каждую версию со своей функцией и степенью правильности. Каждый мир создается из предыдущего мира, и всякий процесс "миротворения" идет путем композиции или декомпозиции предыдущего материала, повторений или создания новых моделей, путем вычеркивания и дополнений, путем организации и упорядочивания различных аспектов этого мира.
После И. Канта, философия постепенно двигалась от идеи уникальной реальности единственного неизменного мира к идее множества миров. Кант поместил основные формы внешнего мира в человеческое сознание. Категории рассудка (причинность и материя) вместе с формами чувственного созерцания (пространство и время) упорядочивают хаотические данные чувственного восприятия, отливая опыт в умопостигаемую и коммуникабельную структуру. Но и Кант, чтобы упорядочить наше представление о мире, исходил из идеала его единства.
Философы после Канта всё настойчивей подвергали сомнению идею единства мира. В ХХ столетии квантовая теория лишила науку той связности, которую Кант считал для науки существенной. Теперь, когда наука открыта множественности и неопределенности, многие философы приветствуют множественность мира. Например, в наши дни Н. Гудмэн говорит: "Наше пристрастие к одному миру удовлетворяется в разное время и в разных целях множеством различных способов. Не только движение, происхождение, вес, порядок, но даже сама реальность относительна". "Пути творения мира" Гудмэна, в которых он выдвигает учение об ирреализме, могут стать для творцов виртуальной реальности букварем.
Реализм и ирреализм одинаково нереалистичны в виртуальной реальности. Причём у ирреализма может оказаться короткое дыхание. Возможно, нам понадобится опереться на понятие реального мира - пусть не из абстрактных убеждений, но, по крайней мере, из-за препятствий, чинимых нашим системам виртуальной реальности реальностью объективной. Необузданное умножение миров взывает к здравому смыслу, к связи с реальностью, наконец, к метафизическому обоснованию. Кант отбросил метафизические теории как пустые софизмы и интеллектуальные игры. Философы ХХ столетия от Витгенштейна и Хайдеггера до Карнапа и Айера в вытеснении метафизики последовали примеру Канта, считая ее либо пустым вращением языковых колес, либо поиском следов призраков, либо просто логической ошибкой. Для этой линии мышления реальность как серьезное понятие потеряла свое значение. Будущие ВР- технологии могут привести к изменениям в этой общей мыслительной направленности и бросить на классическую метафизику новый свет. Следующее столетие может снова углубиться в древнюю область метафизики, раскопанную орудиями смоделированной компьютером виртуальной реальности, метафизической машиной. И, напротив, виртуальные реальности могут обогатиться, сохраняя с реальным миром некоторые отношения, но, не становясь скучными или приземленными.
"Виртуальный" в "виртуальной реальности" восходит к лингвистическому разграничению, сформулированному в средневековой Европе логиком Дунсом Скотом. Его латинское virtus было главным пунктом его теории реальности. Он настаивал на том, что понятие вещи содержит в себе эмпирические атрибуты не формально (как если бы вещь существовала отдельно от эмпирических наблюдений), но виртуально. Хотя для понимания свойств вещи нам может понадобиться углубиться в наш опыт, продолжает Скот, сама реальная вещь уже содержит в своем единстве множество эмпирических качеств, но содержит виртуально - в противном случае все они не закрепились бы как качества этой вещи. Термин "виртуальный" Скот использовал для того, чтобы преодолеть пропасть между формально единой реальностью (предполагаемой нашими концептуальными ожиданиями) и нашим неупорядоченно разнообразным опытом. Сходным образом в наши дни мы используем термин "виртуальный", чтобы пробить брешь между данной нам средой и будущим уровнем достижимой человеческой деятельности. Виртуальное пространство - как противоположность естественному физическому пространству - содержит информационный эквивалент вещей. Виртуальное пространство заставляет нас чувствовать, будто бы мы имеем дело прямо с физической реальностью.
Виртуальный мир должен быть не вполне реальным, иначе он перестанет будить воображение. "Нечто-не-вполне-реальное" стимулирует силу нашего воображения и представления. Воображение позволяет нам взять то, что мы читаем или слышим, и перевести символические компоненты в духовное зрение. Это видение выходит за пределы нашей физической реальности, так что с точки зрения телесного существования воображение - это бегство даже притом, что воображение часто вносит в нашу жизнь новые факторы, которые иногда побуждают нас изменить реальные условия.
Киберпространство также пробуждает наше восприятие. Киберпространство - это большая электронная сеть, в которой свернуты виртуальные реальности. Виртуальная реальность - только один из многих типов явлений внутри электронного пространства. Подобно всякому медиуму, киберпространство вовлекает в общение. В структуре сегодняшнего мира киберпространство - это набор ориентированных точек, по которым мы находим наш путь среди невероятного количества информации.
Как можно сохранить контраст между виртуальным и реальным мирами? Как могут виртуальные реальности сохранить присущий им контраст с реальностью настоящей - так, чтобы у нас оставался метафизический стимул к творчеству и активному использованию нашего воображения в киберпространстве? Какой якорь удержит виртуальные миры в виртуальности. Следует указать на некоторые экзистенциальные аспекты реального мира, позволяющие предотвратить уплощение мира виртуального. Эти экзистенциальные свойства, вытекающие из философии ХХ века, остаются открытыми для обсуждения. Виртуальные миры будят воображение только в том случае, если они не просто воспроизводят существующие свойства реальности, но преобразуют их, выводя за рамки простого распознавания. К таким чертам реального мира следует отнести:
* смерть и рождение;
* переходы между прошлым и будущим;
* тревогу.
Экзистенциально осмысляемый реальный мир функционирует, имея в себе встроенные рамки. Эти рамки задают параметры значению человека. Один из этих параметров, неизбежность нашей смерти, маркирует человеческое существование как конечное. Из-за ограниченности жизни мы делим наши жизни на периоды подобно тому, как расписываем порядок работы. Мы рождены в определенное время и растем внутри различных взаимодействий (родственные отношения). Эти рамки накладывают на реальность экзистенциальные параметры, давая нам почувствовать нашу укорененность на земле (отдельной планете с хрупкими экосистемами). Смерть и рождение принадлежат к якорям реальности.
Другая рамка реальности - темпоральность (временность), предопределенный переход событий из прошлого в будущее, в нашу память или историю. В принципе невозможно стереть ничего из того, что произошло с нами за время жизни. Это свойство переноса отличает реальность от любого преходящего развлечения или мгновенной галлюцинации. Наконец, в силу временного характера форм биологической жизни наш реальный мир пронизан чувством хрупкости и ненадежности, часто обманывает наши ожидания. Возможность физического ущерба в реальном мире придает нам подчеркнутую серьезность, острота которой скрывается за случайными фразами типа: "Будь внимателен". Мы беспокоимся, потому что хрупки. Человеческое существование и отмечено этими тремя свойствами, которые придают нашему опыту разные степени реальности. Они нас привязывают.
В таком случае должны ли искусственные миры быть свободными от смерти, боли, раздражителей? Отказ от этих ограничителей может лишить виртуальность какой бы то ни было степени реальности. Однако просто встроить их, как иногда делает литература, значит, получить поверх реального мира пустое зеркало, простое отображение, к которому мы привязаны. Настоящее киберпространство должно делать большее - будить воображение, а не повторять мир. Виртуальная реальность могла бы стать местом отображения, но отображение должно порождать философию, а не избыточность. "Философия, - сказал У. Джеймс, - это привычка всегда видеть альтернативу". Киберпространство может содержать много чередующихся миров, но альтернативность другого мира сосредоточена в его способности пробуждать в нас другие мысли и чувства.
При взгляде вперед нам открывается прекрасная возможность для исследования, в том числе исследования самих себя. Что такое для нас реальность? К чему мы можем привыкнуть? Восприятие будет изучаться скорее как часть активного, нежели пассивного, поведения. Коммуникация будет изучаться постольку, поскольку становится возможным уловить все, что происходит между двумя людьми.
9.5. Поиск внеземных цивилизаций
О возможности существования жизни и разума во Вселенной. ( О возможности информационного контакта с внеземными цивилизациями. ( О возможных формах технологической активности разума во Вселенной. "Космокреатика". Проблема скрытого вещества. ( Роль астрономии и астрофизики в обнаружении разумной деятельности во Вселенной.

Нашему миру около 5 млрд. лет, а нашей технической цивилизации всего лишь примерно 100 лет. Первые звёзды нашей Галактики сформировались около 10 млрд. лет назад и, хотя на их планетах ещё не было необходимых для цветущей жизни тяжёлых элементов, у этих звёзд было достаточно времени, чтобы пройти свой жизненный цикл и выбросить в космос синтезированные элементы. Из них за миллионы и миллиарды лет до Солнца образовались звёзды второго поколения. Если рядом с одной из них появилась жизнь, то она могла развиваться длительное время, ещё до образования нашей планеты и сегодня цивилизация на ней может быть на миллионы и миллиарды лет старше нашей. Если развитые цивилизации действительно существуют, вполне вероятно, что они точно так же, как и мы, стремятся найти другой разум и связаться с ним94.
9.5.1. О возможности существования жизни
и разума во Вселенной
Достижения астрономии приблизили нас к пониманию эволюции всех объектов Вселенной от момента Большого Взрыва до настоящего времени. Но вот поиск внеземных цивилизаций (ВЦ) пока не дал положительных результатов. В чем причина неудач? Для примера назовём некоторые из них:
1. Первая связана с "земным шовинизмом": большая часть целенаправленных экспериментов предполагает поиски цивилизаций, подобных нашей в XX веке. Но найти такую цивилизацию - событие крайне маловероятное.
2. Вторая проблема - невозможность описания возникновения и эволюции цивилизаций на космически значимых интервалах времени. В связи с этим предлагаем принять как аксиому: существует ненулевая вероятность возникновения жизни во Вселенной, и нет принципиальных причин, ограничивающих уровень ее развития.
3. Третья проблема. Мы слишком переоцениваем наши знания о строении Вселенной, возможно, бесконечной в пространстве и во времени и в многообразии форм и законов. Достаточно вспомнить, что современная астрономия изучает лишь менее 5% средней плотности окружающей нас материи, а более 95% составляет скрытая масса, проявляющаяся только по ее гравитационному воздействию. Скрытая материя, возможно, составляет основную долю массы нашей и других галактик и доминирует в межгалактическом пространстве, а ее исследование - важнейшая нерешенная проблема современной астрономии.
Сегодня, рассуждая о возможности существования жизни и разума во Вселенной, мы основываемся исключительно на умозрительных предположениях, в лучшем случае логически экстраполирующих закономерности нашего общественного развития на развитие возможных внеземных обществ. Одним из многих примеров может служить гипотеза В. С. Троицкого, изображающая в схематическом виде эволюционное развитие Вселенной. Оно начинается с элементарных частиц. Потом возникают ядра, атомы, молекулы, макромолекулы, микробы, колонии микробов, организм, социальные структуры. Последние могут образовывать в своем развитии планетные экосистемы, околосолнечные сообщества, галактические цивилизации. Этот ученый описывает глобальную эволюцию Вселенной, следующим образом:
* Жизнь во Вселенной возникает непрерывно, начиная с образования звезд второго поколения, то есть примерно в течение последних двенадцати миллиардов лет.
* Внеземные космические цивилизации возникают эволюционным путем непрерывно последние восемь миллиардов лет.
* Существует закон неограниченной экспансии разумной жизни, то есть стремление исследовать и занять максимальное пространство.
* Цивилизации достигают уровня, при котором возможна практически неограниченная скорость непрерывного производства энергии.
Первое положение основывается на молчаливо принятом мнении, что жизнь возникает непрерывно по мере достижения определенной организации материи во Вселенной. Начало этого процесса после Большого взрыва определяется сроками синтеза всего набора тяжелых элементов, образования звезд и планет.
После этого начинается эволюционное развитие форм жизни около каждой из звезд, где она возникала, от клетки до технологической цивилизации, на что на Земле ушло около 4 миллиардов лет. Принимая этот срок за некоторую среднюю оценку, необходимую для возникновения разума и цивилизации, автор получает второе положение, которое, очевидно, является переносом земного опыта на всю Вселенную. Это может быть основано только на убеждении, что законы эволюции живого, установленные эволюционной биологией, являются универсальными и действуют во всей Вселенной.
Попытки системного представления идей универсальной эволюции мирового целого выражаются и в создании формул для оценки числа внеземных цивилизаций, существующих в нашей Галактике. Простейшая из них, предложенная Ф. Дрейком, служит рабочей гипотезой для всех расчетов обитаемых миров Вселенной. Она опирается на следующие, схематически представленные предположения, которые выступают в формуле в виде сомножителей:
* Во Вселенной существуют планеты, пригодные для возникновения жизни.
* На некоторых из этих планет возникла жизнь.
* На каких-то планетах появились разумные общественные существа.
* Некоторые общества этих существ развили науку и технику до уровня, позволяющего установить межзвездную радиосвязь.
* И пытаются это сделать.
* Таких обществ "достаточно" много, чтобы эксперименты по межзвездной связи имели смысл.
Считается, что по формуле Дрейка можно оценить вероятность возможности развития разума во Вселенной или возможности развития фазы общественных отношений, обеспечивающих межзвездную связь. Основой суждений, подлежащих формализации, здесь служат представления о типичности процессов усложнения материи в их движении в направлении разума и технологического общества.
Такое понимание ситуации оставляет открытыми много вопросов. Среди них вопросом первостепенной важности является проблема естественнонаучного обоснования глобального эволюционизма.
Дело в том, что образование представлений об общем процессе направленного развития только на Земле (которое привело здесь к возникновению жизни и разума) сопровождается включением большого числа непроверенных, гипотетических моментов во многих существенных звеньях этой линии. Особенно велик элемент недоказуемого в представлениях о существовании и способах функционирования в космосе высших форм движения материи - биологической и социальной (которые являются необходимой составляющей представлений о глобальном эволюционизме).
Это отчетливо видно из различия в оценках значения величин сомножителей формулы Дрейка, введенной для определения численной вероятности существования внеземных цивилизаций. Каждый из этих сомножителей отражает определенный узловой момент в развитии материи; возникновение планет вокруг звезды, зарождение жизни на планетах, возникновение разума на Земле и на других телах Вселенной, появление технологического общества и т. д.
Л. М. Гиндилис показывает, что элемент гипотетического при включении в глобальный эволюционизм высших форм движения материи последовательно возрастает. В настоящее время можно более или менее надежно определить только величину, определяющую долю звезд, имеющих планетные системы, основываясь на изучении скорости вращения звезд различных спектральных классов; на анализе распространенности двойных и кратных систем; на наличии невидимых спутников звезд; на представлениях звездной и планетной космогонии.
Согласно этим оценкам, не менее 10%, а может быть подавляющее большинство звезд Галактики, имеют планетные системы. Это положение, конечно, нельзя считать строго доказанным, тем не менее, оно представляется достаточно обоснованным совокупностью многих данных.
Определение доли звездных систем, имеющих планеты пригодные для возникновения жизни, сопряжено уже с гораздо более серьезными трудностями. Обычно при ее оценке, прежде всего, исключаются горячие молодые звезды ранних спектральных классов. Помимо ограничений, связанных со спектральным классом звезды, существуют ограничения для размера планетных орбит (орбита должна находиться внутри "зоны жизни", определяемой температурными условиями), при которых может активно функционировать известная нам белковая форма жизни; ограничения для радиуса и массы планеты, скорости ее вращения и т. д.
Однако для оценки этой величины, надо знать не только какие условия существуют на других планетах, но и какие условия необходимы для возникновения и развития жизни. Эти представления содержат еще больший элемент неопределенности. Исчисление же доли планет, на которых действительно существует жизнь, еще более сложно. Это вопрос о том, в какой степени возникновение жизни можно считать закономерным процессом. Многие специалисты, занимающиеся изучением происхождения жизни на Земле, полагают, что хотя образованию живого из неживого сопутствовала масса случайностей, в целом этот процесс статистически закономерен.
За длительный период времени жизнь неизбежно должна возникнуть на любой планете с подходящими условиями. Время возникновения жизни должно быть меньше времени существования планет. Незначительное отличие физических условий на других планетах по сравнению с земными условиями может увеличить срок химической эволюции на 1-2 порядка. В этом случае для зарождения жизни потребуется время большее, чем возраст Вселенной. Но поскольку нам ничего не известно о сроках химической эволюции на других планетах, мы не можем сказать ничего определенного и о вероятности происхождения жизни на планете с подходящими условиями.
Значение других сомножителей - доли планет, населенных разумными существами, доли планет, на которых разумная жизнь достигает фазы технологической цивилизации, а также длительности существования технически развитой цивилизации - вызывает противоречивые оценки. Задача определения их связана с огромным числом допущений, выходящих за рамки научного знания. Не ясно, например, насколько закономерен процесс эволюции, приведший к образованию разумной жизни на Земле, поскольку по мере усложнения организмов пути эволюции разветвляются и, по-видимому, только некоторые из них ведут к появлению разума.
На основе всего этого можно согласиться с Л. М. Гинделисом, что сам тезис о существовании внеземных цивилизаций точно также недоказуем сегодня, как и альтернативный ему тезис об уникальности земного разума.
Ещё один важный момент связан с тем, что всё вышесказанное относится к привычной для нас форме жизни, основанной на углероде. Хотя нам до сих пор известна лишь земная белково-нуклеиново-водная жизнь, это не означает, что в безграничном космосе не могут существовать другие её формы. Некоторые ученые, например, Г. Файнберг и Р. Шапиро, моделируют такие гипотетически возможные варианты жизни как:
* плазмоиды - жизнь в звездных атмосферах за счет магнитных сил, связанных с группами подвижных электрических зарядов;
* радиобы - жизнь в межзвездных облаках на основе агрегатов атомов, которые находятся в разных состояниях возбуждения;
* лавобы - жизнь на основе соединений кремния, который может существовать в озерах расплавленной лавы на очень горячих планетах;
* водоробы - жизнь, которая может существовать при низких температурах на планетах, покрытых "водоемами" из жидкого метана, и черпать энергию из преобразований ортоводорода на параводород;
* термофаги - разновидность космической жизни, которые получают энергию из градиента температур в атмосфере или океанах планет.
Конечно, такие экзотические, на наш взгляд, формы жизни пока что существуют лишь в воображении ученых и писателей-фантастов. Тем не менее, не исключена возможность реального существования некоторых из этих форм, например, плазмоидов. Во всяком случае ничто не запрещает нам считать, что где-то в космосе или даже на Земле параллельно с "нашей" формой жизни существует другая её разновидность, похожая, например, на упомянутых плазмоидов. Если уж идти дальше в этом направлении, то к проявлениям их активности можно отнести некоторые виды НЛО (неопознанных летающих объектов), образования, похожие на шаровые молнии, а также невидимые для глаза, но фиксируемые цветной фотопленкой летающие в атмосфере энергетические "сгустки". Разумеется, пока это не более чем ни на чём не основанные предположения.
9.5.2. О возможности информационного контакта с внеземными цивилизациями
Любая связь предполагает обмен информацией посредством каких- либо посредников. При непосредственном контакте достаточно ясно как общаться, а вот при связи на некотором удалении... Так, например когда мы разговариваем по телефону, информация передается за счет изменяемого значения электрического напряжения определенным образом оговоренного заранее. То же самое происходит, когда мы слушаем радио или смотрим телевизор, только носителем информации здесь выступают радиоволны. Хотя на первый взгляд все просто, снял трубку, набрал номер и говори, но при этом мы забываем, что существует множество телефонных станций, операторов и т. д. Вся система связи была кем-то заранее разработана, принята определенная система кодирования сигналов, которая должна быть одинакова у всех абонентов, иначе не будет связи. Кстати в разных странах системы различны, поэтому если вы купите телефонный аппарат, предназначенный для другой страны, то он может и не работать у нас и наоборот. При этом не следует думать, что какая-то система связи лучше, а какая-то хуже, они просто разные.
Если мы попытаемся установить радиосвязь с внеземными цивилизациями, то, даже настроившись на одну волну, мы вряд ли сможем понять друг друга, например, из-за разного типа модуляции сигналов. Ведь у нас нет возможности заранее договориться о типе связи. В связи с этим возникают следующие вопросы:
1. каким будет носитель связи (радио, свет, космический зонд...);
2. тип модуляции сигнала (иными словами способ передачи информации).
Вообще-то эти два вопроса довольно тесно связаны между собой, и не всегда их можно рассматривать по отдельности.
Рассмотрим традиционную радиосвязь. Для этого потребуется большая мощность радиопередатчика. Большие радиотелескопы, существующие сегодня, позволяют посылать направленный сигнал такой мощности, что если на близлежащих звездах имеется технически развитая цивилизация, то она сможет принять эти сигналы и распознать их искусственное происхождение. Итак, передатчик радиосигналов подходящей мощности есть.
Каким же должен быть сигнал? Видимо таким, чтобы инопланетная цивилизация при получении его однозначно могла определить искусственное происхождение сигнала. При этом необходимо, чтобы этот сигнал вообще был обнаружен, то есть он должен обладать каким-то качеством, которое заставило бы обратить на него внимание. Например, можно использовать определённую периодичность и т. д.
* Для того чтобы связь была установлена необходимо:
* во-первых, чтобы уровень развития внеземной цивилизации был не ниже нашего;
* во-вторых, чтобы во время прихода сигнала инопланетяне осуществляли радиопрослушивание нашей солнечной системы, да еще на той частоте на которой мы ведем передачу;
* в-третьих, невозможно вести длительную передачу сигналов, так как из-за высокой мощности передатчика это опасно для окружающих и требует больших энергозатрат, а, следовательно, и больших финансовых вложений;
* в-четвертых, непонятно в направлении какой звезды надо осуществлять передачу, а ведение передачи одновременно по нескольким направлениям пока технически невозможно (из-за недостаточной мощности передатчика).
При этом следует иметь в виду, что длительность даже самого короткого сигнала должна составить несколько часов, иначе сама попытка не имеет смысла. Это связано с особенностью обнаружения и приема сигнала на больших расстояниях в условиях сильных помех. Помехи для радиосвязи обусловлены мощным излучением нашего солнца и электромагнитными полями в межзвездном пространстве.
Кроме того, неизвестно на какой волне нужно вести передачу, чтобы ее можно было обнаружить. Технически приемлемой может быть одна частота, а логически следует использовать какие-то другие частоты (например, частоту спектра водорода - 21см). Если вести передачу в широкой полосе частот, то это потребует больших энергозатрат. Поэтому нам пока остается только вести радиопрослушивание, в надежде обнаружить сигнал от других цивилизаций. Следует отметить, что подобные эксперименты по радиопрослушиванию ставились уже 30 лет назад и пока не увенчались успехом.
Существуют различные предположения о попытках установления дальней связи. В соответствии с некоторыми из них несколько необычные излучения некоторых звезд можно представить как такую попытку. Но их можно объяснить и вполне естественными причинами. Например, периодичностью в излучении звезд или наличием в спектре излучения спектров редких материалов. В частности источник радиоизлучения СТА-102 является переменным во времени с периодом примерно полгода вдобавок его спектр излучения и спектр излучения источника СТА-21 похожи на спектры излучения искусственного характера. Однако впоследствии эти источники были идентифицированы как квазары, что объяснило их "ненормальное" излучение естественными причинами.
Другой способ связи это использование сверхмощных лазеров. Здесь трудностей еще больше: такой сигнал труднее обнаружить на фоне излучения звезды; необходима точная направленность даже не на звезду, а на планету; по техническим причинам необходима установка лазеров за пределами атмосферы; требуются высоко мощные источники излучения и прочее. Технически этот способ сегодня еще менее приемлем, чем радиосвязь.
Еще одна идея - (разумеется, фантастическая) использовать в качестве передатчика наше Солнце. Например, сбросить на Солнце многие миллионы тонн какого - либо редкого вещества, горение которого изменит спектр Солнца. Или построить вокруг Солнца сплошную сферу из вещества с переменной прозрачностью. Меняя прозрачность можно изменить мощность и спектр излучения в межзвездное пространство. Таким образом, можно даже вести кодированную передачу информации. На сегодняшний день эти идеи практически невыполнимы, но у них есть очень интересная особенность- передача информации будет происходить сразу по всем направлениям и на довольно большое расстояние.
Другая идея - это общение при помощи космических зондов. Запущенный с Земли зонд через несколько десятков или сотен лет способен достичь близлежащих звезд, там он должен выйти на постоянную орбиту вокруг звезды и проинформировать о своем присутствии: например подачей радиосигналов, или иным, более сложным способом. Впоследствии зонд либо сам передаст информацию на планету о том, откуда он прилетел и о землянах, либо инопланетяне сами доберутся до этого зонда и получат информацию о нашей Солнечной системе.
Определённую пользу в понимании технологии контакта с внеземными цивилизациями может оказать интенсивное исследование различных древних земных цивилизаций, с особой активностью проводившееся на протяжении последнего столетия на нашей планете. Оно наглядно продемонстрировало их существенное многообразие, значительную вариантность по целому ряду как ключевых, так и факультативных характеристик. Осознанная в процессе этих исследований принципиальная возможность существования культур, коренным образом различающихся между собой как по содержанию, так и по принципам и формам организации, не может не оказать благотворного влияния на изыскания в сфере контактов с внеземными цивилизациями. Эти исследования существенно расширяют спектр эвристических подходов, избавляют исследователя от искусственных ограничителей, диктуемых ожиданием подобия уже известным прецедентам.
Однако следует иметь в виду, что сопоставление различных человеческих культур между собой, с одной стороны, и какой-либо земной культуры или совокупности подобных культур с гипотетической внеземной цивилизацией, с другой, есть исследовательские процедуры, во многом между собой несходные. При всем многообразии человеческих культур прошлого они обладают определенным единством, порожденным единой психофизической природой их создателей. Кроме того, необходимо учитывать различие информационного потенциала культурных объектов, сопоставляемых между собой в каждом из названных случаев.
Любая земная культура - даже в случае минимального нашего с ней знакомства - предъявлена нам в определенной динамике, позволяющей реконструировать ее жизнь, а, следовательно - и характер, тогда как единичное столкновение с гипотетической внеземной цивилизацией являет нам эту динамику предельно скудно. Даже задача различения природных и искусственных (культурных) объектов требует зачастую наличия развернутого контекста; в противном случае возможны неправильные интерпретации даже в рамках земных культур, чему существуют хорошо известные примеры. Имеется и ряд иных сходных проблем95.
Все сказанное заставляет с осторожностью подходить к оценке эвристического значения опыта исследования земных культур в деле поисков внеземных цивилизаций, хотя вовсе исключить его значение, разумеется, нельзя.
В заключение, в качестве оптимистического прогноза возможности контакта с внеземными цивилизациями обратимся к мнению известного американского исследователя в этой области Марвина Минского, который считает, что контакт принципиально возможен, так как мы и они должны мыслить одинаково. Он подкрепляет это утверждение следующими логическими доводами:
* Решение всех интеллектуальных задач зависит от одних и тех же факторов: времени, пространства и используемых материалов.
* Чтобы эффективно действовать в рамках этих ограничений, необходимо научиться формировать представления о ситуации и оперировать этими понятиями.
* Свойства любого интеллекта должны быть основаны на универсальных принципах: а/ экономность мышления; б/ уникальность простых идей.
9.5.3. О возможных формах технологической
активности разума во Вселенной
Жизнь и разум, будучи важными атрибутами материи, могут быть существенным и при том не только пассивным, но и активным фактором эволюции космоса. В концепции биосферы и ноосферы это выражается в планетарных масштабах. Но и здесь уже намечается переход к следующей ступени. Подтверждение этому можно видеть в изменении глобальных характеристик Земли, как космического тела (например, по уровню радиоизлучения) и в первых попытках освоения Солнечной системы.
Идея вмешательства высокоразвитых цивилизаций в эволюцию космоса была развита уже К. Э. Циолковским. Он считал, что высокоразвитые внеземные цивилизации, освоившие наблюдаемую нами область Вселенной, в широких масштабах воздействуют на ход природных процессов. По выражению Е. Т. Фаддеева, они "могут сознательно и по-новому организовывать материю, регулировать ход естественных событий". Сходных взглядов придерживался и известный американский астроном О. Струве. По его мнению, наука в середине XX века достигла уже такого уровня в изучении Вселенной, когда, "наряду с классическими законами физики, необходимо принимать во внимание деятельность разумных существ". Н. С. Кардашев, в связи с проблемой поиска внеземных цивилизаций, высказал мысль о том, что расширение наблюдаемой области Вселенной может быть "результатом сознательной деятельности суперцивилизаций"96. Во всяком случае, ничто не запрещает нам делать и принимать во внимание подобные предположения.
В современных моделях эволюции космических цивилизаций рассматриваются различные варианты "космокреатики", под которой подразумевается деятельность внеземного разума, направленная на "фундаментальную перестройку структуры материального мира, включая, быть может, изменение его пространственно-временных свойств и некоторых основных законов". Ряд вариантов космокреатики (космогоническое конструирование, создание миров, конструирование законов природы) рассмотрены известным писателем-фантастом С. Лемом в "Сумме технологий". Л. В. Лесков указал на принципиальную возможность воздействия на другую метагалактику через микроскопическую горловину фридмона, а также путем воздействия на фридмон в целом с помощью ускорителей элементарных частиц. Им же рассмотрены модели эволюции, основанные на интеграционных процессах и приводящие к объединению космических цивилизаций, к образованию Метацивилизаций, а также - еще более высоких структур.
Технологическая активность человека в космосе, конечно, не сравнима с гипотетической активностью высокоразвитых внеземных цивилизаций, но, тем не менее, человечество уже делает первые шаги в этом направлении. Европейское космическое агентство в 1995 г. запустило на орбиту инфракрасный телескоп "ISO". Телескоп показал, что примерно у половины звёзд есть планеты, а в космосе - в любой его части - много водяных паров. Это означает: жизнь в нашей Вселенной явление вполне вероятное.
Эти и многие другие удивительные открытия стали возможны благодаря практически только что начавшимся исследованиям Вселенной в инфракрасном и субмиллиметровом диапазоне. Именно в нём сосредоточена основная часть излучения Вселенной. Инфракрасный спектр излучения характеризуется очень низкой температурой, что-то около -2000 по Цельсию. Определить столь низкую температуру можно прибором охлаждённым ещё сильнее. Поэтому приёмники низкотемпературных излучений охлаждают жидким гелием до -2710 С. По такому принципу были построены инфракрасные спутники-телескопы: первый "IRAS", а затем "ISO" Вне этих приборов в межпланетном пространстве гораздо "теплее".
Благодаря этим технологиям было, например, сделано следующее удивительное открытие. Облака молекул и пыли, которые протянулись в космосе на сотни световых лет, астрономы считают инкубаторами звёзд. Но долго было непонятно, почему первоначальное сгущение в этом облаке имеет шанс превратиться в звезду, хотя из расчётов следовало, что по мере превращения сгущения в раскалённый шар и соответствующего нагрева окружающего газа этот шар должен был бы остыть. Но оказалось, что в межзвёздных тучах медленно плывущих в Млечном пути сосредоточены огромные массы водяного пара. В них непрерывно соединяются водород и кислород в молекулы воды за счёт энергии звёздного излучения. Присутствие водяных паров, о которых раньше не было известно, меняет всё. Водяной пар способствует охлаждению газа, он не разлетается и способствует увеличению массы будущей звезды до возникновения в ней термоядерных реакций. Например, около созвездия Ориона обнаружено облако, которое за один день производит из водорода и кислорода столько воды, что ею можно заполнить все моря и океаны Земли 60 раз. Вода, как известно, - это жизнь...
Другая область исследований, еще более трудная, но еще более важная в связи с поиском ВЦ: современная космология, в частности модели хаотически возникающих мини-Вселенных в разных частях и в разное время, открывают возможность существования ВЦ сколь угодно высокого уровня развития. В связи с этим возникает вопрос: есть ли возможность исследовать другие мини-Вселенные?
Современная физика элементарных частиц принимает в качестве гипотетического фундамента симметрию между правым и левым: каждая элементарная частица имеет зеркальный аналог, то есть могут быть зеркальные электроны, позитроны, протоны, нейтроны, мезоны, нейтрино, фотоны, глюоны, кварки и др. - все виды известных частиц.
"Наши" частицы могут взаимодействовать с зеркальными частицами, по-видимому, только гравитационно. Из этих частиц могут быть образованы зеркальные атомы, звезды с планетными системами, галактики и их скопления. Не исключено, что где-то там существуют и внеземные цивилизации. В зеркальной Вселенной должен быть свой, невидимый для нас, спектр электромагнитного излучения.
Предположим, что значительная часть скрытой массы является зеркальным веществом. Если принять, в соответствии с наблюдениями, что в нашей Вселенной 70% плотности составляет однородная среда (например, вакуум), а 5% - нормальное наблюдаемое вещество, то зеркальное нормальное вещество может составлять от 5 до 25%. Нижняя граница соответствует модели, когда плотности нормальной и зеркальной материи одинаковы и соответственно эволюция Вселенной идет одинаково. Верхняя граница плотности зеркальной материи предполагает большую плотность в зеркальном мире. В этом случае количество тяжелых элементов в зеркальном мире будет больше, а момент рекомбинации, образование астрономических объектов и возникновение цивилизаций могут произойти раньше, чем в нашем мире.
Объекты из зеркальной материи могут располагаться в отдельных районах пространства или быть перемешаны с нормальной материей. Вопросы о возможном пространственном разделении нашего и зеркального вещества, так же как и существование зеркальных объектов внутри Земли, Солнца и в нашей Галактике, например в виде двойных звезд, когда одна или обе зеркальные, представляются исключительно интересными для исследователей.
Необходимо обратить внимание на обнаружение нового типа галактик с очень большой долей скрытой массы. Их вращение, по данным радиоастрономических наблюдений, согласуется со структурой Галактики, состоящей из плоского диска, спиральных рукавов и сферического Гало, однако нормального звездного свечения не видно. Темная материя имеет необычно высокую плотность и в ядре галактики, где обычная звездная компонента все-таки видна.
Возможен ли обмен информацией с зеркальным миром? Если взаимодействие только гравитационное, то и обмен информацией может осуществляться с помощью измерения переменной величины тяжести. Простейший обмен информацией возможен при воздействии гравитирующих зеркальных масс на специальные приборы - гравиметры с близких расстояний. Со сколь угодно далеких расстояний информация может быть передана и принята с помощью гравитационных волн. Первые гравитационно-волновые телескопы должны быть запущены в эксплуатацию в ближайшие годы.
Современные представления о Вселенной базируются на инфляционных моделях, согласно которым мы живем в одном из расширяющихся "пузырьков", образующихся в кипящем и бесконечно существующем вакууме. К этим представлениям теоретики пришли, отталкиваясь от первоначального требования построить модель Вселенной, бесконечной во времени и пространстве и неизменной в среднем по времени.
Нам представляется весьма важным аксиоматически принимаемое предположение о существовании в Большой Вселенной цивилизаций любого уровня и любой длительности развития. Необходимо также отметить несколько направлений дальнейших исследований скрытого вещества, связанных с достаточно обоснованными предположениями о существовании зеркального вещества, топологических пространственных туннелей и больших искусственных конструкций как возможных составляющих скрытой массы:
1. Развитие исследований планетных систем и поиск новых объектов в Галактике, учитывая возможность обнаружения гигантских искусственных конструкций как возможной доли скрытой массы.
2. Исследования с целью поиска объектов, состоящих в основном из зеркального вещества. Большой интерес представляет исследование галактик с аномально большим отношением массы к светимости, поиск зеркальных звезд и планет, анализ сигналов телескопов гравитационных волн как возможных передач ВЦ.
3. Развитие теории Вселенной со сложной топологией и туннелями; - поиск и исследование первичных черных дыр и объектов типа "черная дыра - белая дыра" с целью выявления топологических туннелей и астроинженерных конструкций около них97.

ЛЕТОПИСЬ естественнонаучных
ОТКРЫТИЙ
Период становления физики как науки
Начало XVII в. - 80-е гг. XVII в. Физика развивается как самостоятельный раздел науки. Основоположником её становится Г. Галилей.
* 1600 г. Вышел в свет трактат У. Гильберта "О магните, магнитных телах и о большом магните Земле", в котором заложены основы электро- и магнитостатики.
* 1603 г. Открыта фосфоресценция (В. Каскариоло).
* 1604 г. Вышел в свет трактат И. Кеплера по оптике "Дополнения к Вителлию", где помещены его теория зрения, теория камеры-обскуры, сформулирован один из основных законов фотометрии - закон обратной пропорциональности между освещенностью и квадратом расстояния до источника света.
* 1607 г. Попытки Г. Галилея измерить скорость света с помощью сигналов фонаря.
* 1609 г. В труде "Новая астрономия" И. Кеплер излагает первые два закона движения планет и высказывает мысль о том, что вес тела составляет общую тенденцию всех тел к соединению. Г. Галилей сконструировал зрительную трубу и использовал ее как телескоп для астрономических наблюдений, что привело к революционным изменениям в астрономии, в частности к возникновению оптической астрономии.
* 1610 г. Г. Галилей при помощи, сконструированной им зрительной трубы с 30-кратным увеличением, открыл четыре спутника Юпитера. Вышел в свет труд Г. Галилея "Звездный вестник", где помещены его астрономические открытия гор и впадин на Луне, четырех спутников Юпитера, новых звезд, которые невозможно видеть невооруженным глазом. Высказана мысль о том, что Млечный Путь состоит из бесконечного множества звезд. Вскоре Галилей открыл также фазы Венеры и пятна на Солнце.
* 1610...1614 г.г. Г. Галилей конструирует свои микроскопы. Благодаря Галилею линзы и оптические приборы стали мощными орудиями научных исследований.
* 1611 г. Вышел в свет труд И. Кеплера "Диоптрика", в котором дана теория зрительной трубы, в частности конструкция трубы, которую теперь называют кеплеровой. В этом труде и в предыдущем ("Дополнения к Вителлию") изложена элементарная геометрическая оптика.
* 1619 г. Вышел в свет трактат И. Кеплера "Гармония мира", в котором содержится третий закон движения планет.
* 1621 г. В. Снеллиус экспериментально открыл закон преломления света.
* 1625 г. Открытие вариации магнитного склонения (Г. Геллибранд).
* 1627 г. Вышел в свет труд Р. Декарта "Рассуждения о методе".
* 1628 г. Итальянский ученый Б. Кастелли установил закон обратной пропорциональности скорости течения жидкости в трубах площади поперечного сечения.
* 1632 г. Вышел в свет известный труд Г. Галилея "Диалог о двух основных системах мира - птолемеевой и коперниковой", где, в частности, содержатся два важных принципа современной физики - принцип инерции и принцип относительности.
* 1636 г. Вышел в свет трактат М. Мерсенна "Универсальная гармония", где изложены его исследования по акустике.
* 1637 г. Вышел в свет труд Р. Декарта "Диоптрика", где излагается идея эфира как переносчика света, дается теоретическое доказательство закона преломления, которое было высказано Декартом еще в 1630 г. Экспериментально закон преломления установлен в 1621 г. В. Снеллиусом. Р. Декарт ввел понятие переменной величины и функции.
* 1638 г. Вышел в свет труд Г. Галилея "Беседы и математические доказательства, касающиеся двух новых областей науки...", в котором, в частности, содержится идея конечности скорости распространения света и постановки эксперимента для ее определения, утверждение, что при отсутствии сопротивления среды все тела падают с одинаковой скоростью; законы свободного падения (пропорциональность скорости падающего тела времени падения, и пропорциональность пройденного пути квадрату времени), закон сложения перемещений и т. п. Итальянский ученый Дж. Б. Бальяни впервые четко разграничивает понятие веса и массы тела и указывает на пропорциональность веса массе.
* 1643 г. Открытие атмосферного давления, способа получения вакуума и создание первого барометра (Э. Торричелли). Установление Э. Торричелли формулы для скорости истечения жидкости из узкого отверстия в открытом сосуде (формула Торричелли).
* 1644 г. Вышел в свет труд Р. Декарта "Начала философии", в котором впервые четко сформулирован закон инерции, дана теория магнетизма и изложена первая космогоническая гипотеза. Здесь же помещен и его закон сохранения количества движения. М. Мерсенн дал количественное описание наблюдений, выполненных У. Гильбертом.
* 1646...1647 гг. Б. Паскаль подтвердил существование атмосферного давления, повторив опыт Торричелли, и экспериментально обнаружил уменьшение атмосферного давления с высотой.
* 1647 г. Итальянский математик Б. Кавальери в трактате "Шесть геометрических упражнений" дал формулу линзы.
* 1648 г. Открытие дисперсии света (И. Марци).
* 1650 г. О. Герике изобрел воздушный насос.
* 1653 г. Установление Б. Паскалем закона распределения давления в жидкости (закон Паскаля), опубликован в 1663 г.
* 1655 г. Изобретение ртутного термометра.
* 1657 г. Х. Гюйгенс сконструировал маятниковые часы со спусковым механизмом, ставшие основой точной экспериментальной техники (проект соединения маятника со счетчиком предлагал Галилей еще в 1636 г.). Изобретен водяной барометр (О. Герике).
* 1659 г. Р. Бойль и Р. Гук усовершенствовали воздушный насос Герике.
* 1660 г .Х. Гюйгенс и Р. Гук установили постоянные точки термометра - точку таяния льда и точку кипения воды. Вышел в свет труд Р. Бойля "Новые опыты..., касающиеся упругости воздуха". О. Герике сконструировал основанную на трении электрическую машину.
* 1661 г. Р. Бойль в труде "Химик-скептик" сформулировал понятие химического элемента как простейшей составной части тела.
* 1662 г. Р. Бойль открыл зависимость давления газа от объема, Независимо от Бойля этот же закон установил Э. Мариотт в 1676 г. Отсюда и современное название - закон Бойля - Мариотта. П. Ферма сформулировал оптический принцип, названный его именем (принцип Ферма).
* 1665 г. Опубликован труд Ф. Гримальди "Физико-математический трактат о свете, цветах и радуге", в котором содержится открытие явления дифракции (интерференции) света. Вышел в свет трактат Р. Гука "Микрография", в котором описаны его микроскопические наблюдения. И. Ньютон вывел обратно пропорциональную зависимость силы тяготения квадрату расстояния между притягивающимися телами.
* 1666 г. Открытие И. Ньютоном явления разложения белого света в спектр (дисперсия света) и хроматической аберрации.
* 1667 г. Вышел в свет труд Л. Магалотти "Очерки о естественнонаучной деятельности Академии опытов", в котором изложены результаты коллективной работы, проводимой академиками флорентийской Академии опытов в 1657...1667 гг. Описаны термометры, ареометр, гигрометр, маятник с бифилярным подвесом, опыты по тепловому расширению тел и получению вакуума. Дж. Борелли вывел закон столкновения неупругих тел.
* 1668 г. И. Ньютон сконструировал первый зеркальный телескоп (телескоп-рефлектор).
* 1669 г. Х. Гюйгенс дал теорию удара упругих тел и установил закон сохранения количества движения (mv) и закон "живых сил" (mv2/2). Э. Бартолин открыл двойное лучепреломление света в кристаллах исландского шпата. Открыт 15-й элемент - фосфор (Г. Брандт). Немецкий химик И. Бехер выдвинул гипотезу флогистона.
* 1670...1671 г. г. В сочинении "Метод флюксий" (опубликовано в 1736 г.) И. Ньютон наиболее полно разработал дифференциальное и интегральное исчисления.
* 1684 г. систематическое изложение дифференциального исчисления, а в 1686 г. изложение интегрального исчисления опубликовал Г. Лейбниц.
* 1672 г. Вышел в свет труд О. Герике "Новые, так называемые магдебургские опыты о пустом пространстве". Впервые с приемлемой точностью измерено расстояние до Солнца (Ж. Ришар, Д. Кассини).
* 1674 г. Р. Гук в трактате "О движении Земли" высказал идею тяготения и представил свою систему мироздания. В 1680 г. Р. Гук пришел к выводу, что сила тяготения обратно пропорциональна квадрату расстояния.
* 1675 г. Р. Гук открыл основной закон упругости (закон Гука) и Ньютон выдвинул корпускулярную гипотезу света. Исследуя интерференцию и дифракцию света, И. Ньютон открыл так называемые "кольца Ньютона".
* 1676 г. О. Ремер в результате наблюдений спутников Юпитера сделал вывод о конечности скорости распространения света и по данным наблюдений впервые определил ее величину - 214000 км/сек, (до этого Дж. Порта, И. Кеплер, Р. Декарт и др. считали скорость света бесконечной). Э. Мариотт предложил рассчитывать высоту места по данным барометра.
* 1678 г. Х. Гюйгенс обнаружил явления двойного лучепреломления в кварце и поляризации света. Создание Х. Гюйгенсом волновой теории. Вышел в свет труд Х. Гюйгенса "Маятниковые часы", в котором приведены теория физического маятника, понятие момента инерции и законы центробежной силы.
* 1680 г. Открытие зависимости точки кипения воды от давления (Д. Папен). В 1680 г. Д. Папен изобрел паровой котел с предохранительным клапаном.
* 1681 г. Х. Гюйгенс объяснил изменение периода колебаний маятника изменением ускорения силы тяжести, выдвинул идею об измерении ускорения силы тяжести при помощи секундного маятника и первым пришел к выводу о том, что Земля у полюсов сплюснута.
* 1686 г. Найдена барометрическая формула (Э. Галлей). Введение Г. Лейбницем понятия "живой силы" (энергии) как произведения массы тела на квадрат его скорости.
Первый этап развития естествознания
(кон. XVII в. - 60 годы XIX в.)
Возведенная Ньютоном, его предшественниками и последователями грандиозная система классической физики (конец XVII в. - конец XIX в.) просуществовала почти два века и только в конце XIX в. начала рушиться под напором новых фактов и концепций, не укладывающихся в рамки существующих теорий.
Первый ощутимый удар по физике Ньютона нанесла еще в 60-х годах XIX в. теория электромагнитного поля Максвелла - вторая после ньютоновской механики великая физическая теория, дальнейшее развитие которой углубило ее противоречия с классической механикой и привело к революционным изменениям в физике.
Поэтому период классической физики делится на два этапа: первый этап - от И. Ньютона до Дж. Максвелла (конец XVII в. - 60-е гг. XIX в.); второй этап - от Максвелла до 1895 г (60-е гг. XIX в. - 1894 г.).
* 1687 г. Вышел в свет труд И. Ньютона "Математические начала натуральной философии" ("Начала"), содержащие основные понятия и аксиоматику механики, в частности три основные ее закона (законы Ньютона) и закон всемирного тяготения. Выход в свет "Начал" открыл новый период в истории физики, так как в них впервые содержалась законченная система механики, законы которой управляют большим количеством процессов в природе. Французский механик П. Вариньон в книге "Проект новой механики" формулирует понятие момента силы и дает в общей геометрической форме теорему о моменте равнодействующей.
* 1690 г. Вышел в свет "Трактат о свете" Х. Гюйгенса (завершен в 1678 г.), в котором помещены волновая теория света (световые возбуждения являются упругими импульсами в эфире), принцип построения огибающей волны (принцип Гюйгенса) и описано открытое им явление поляризации света. Д. Папен дал описание замкнутого термодинамического цикла паровой машины.
* 1693 г. Э. Галлей вывел общую формулу линзы.
* 1694 г. К. Ренальдини предложил в качестве фиксированных температур при градуировке термометра использовать температуры таяния льда и кипения воды.
* 1698 г. Открытие электрической искры (Вольт).
* 1702 г. Г. Амонтон усовершенствовал воздушный термометр Г. Галилея, сконструировав термометр, в основном похожий на современный газовый. Этот термометр дал возможность Амонтону прийти к понятию абсолютного нуля, который по его данным составлял -239,5°C.
* 1703 г. Вышел в свет труд Х. Гюйгенса "О центробежной силе".
* 1704 г. Вышел в свет труд И. Ньютона "Оптика".
* 1705 г. Т. Ньюкомен изобрел тепловую машину - первую машину, успешно применяемую для подъема воды.
* 1706 г. Начало исследований разрядов в газах (Ф. Гауксби).Построена первая стеклянная электрическая машина (Ф. Гауксби).
* 1710 г. Открыто свечение воздуха в стеклянной трубке при электрическом разряде (Ф. Гауксби).
* 1714 г. Введение Г. Фаренгейтом термометрической шкалы, названной его именем (шкала Фаренгейта).
* 1717 г. И. Бернулли сформулировал в общей форме принцип возможных перемещений.
* 1718 г. Э. Галлей открыл собственное движение звезд, чем разрушил давние представления об их неподвижности. Ж. Жюрен открыл закон подъема жидкости в капиллярных трубках, названный его именем (закон Жюрена). Обратная пропорциональная зависимость высоты подъема жидкости в капиллярах диаметру капилляра была известна еще в 1670 г. Дж. Борелли.
* 1721 г. Выдвинута теория теплорода.
* 1725 г. Дж. Брадлей открыл аберрацию света и в 1728 г. дал ей правильное объяснение, чем окончательно подтвердил факт конечности скорости распространения света.
* 1729 г. Вышел в свет "Оптический трактат о градации света" П. Бугера, в котором, в частности, помещен закон ослабления света.
* Открыто явление электропроводности (С. Грей).
* 1730 г. Р. Реомюр предложил применять в термометрах спирт и ввел шкалу, названную его именем (шкала Реомюра).
* 1733 г. Открытие двух видов электричества, установление притяжения разноименных зарядов и отталкивания одноименных (Ш. Дюфе).
* 1736 г. Вышел в свет труд Л. Эйлера "Механика", положивший начало превращению механики из геометрической науки в аналитическую.
* 1737 г. Открытие Дж. Брадлеем явления нутации земной оси.
* 1738 г. Вышла в свет работа Д. Бернулли "Гидродинамика", в которой содержится уравнение, выражающее закон сохранения энергии применительно к стационарному движению идеальной несжимаемой жидкости (уравнение Бернулли).
* 1739 г. Л. Эйлер дал полную теорию колебания струны.
* 1740 г. Изобретение фотометра (П. Бугер).
* 1742 г. А. Цельсий предложил стоградусную шкалу термометра, названную его именем (шкала Цельсия).
* 1742 г. Введены понятия "проводник" и "непроводник" электричества (Ж. Дезагюлье).
* 1743 г. Вышел в свет "Трактат о динамике" Ж. Даламбера, где впервые сформулированы общие правила составления дифференциальных уравнений движения любых материальных систем и дан принцип, сводящий задачи динамики к задачам статики (принцип Даламбера).
* 1744 г. Г. Рихман дал формулу для определения температуры смеси однородных жидкостей. М.В. Ломоносов ввел представление о молекулах и атомах и создал молекулярно-кинетическую теорию строения вещества.
* Л. Эйлер сформулировал принцип наименьшего действия (независимо от Эйлера этот принцип применительно к механике развил также в 1744...1746 гг. П. Мопертюи).
* 1745 г. М. В. Ломоносов высказал мысль, что причина теплоты заключается в движении ("теплота состоит во внутреннем движении материи").
* 1745 г. Изобретен первый электрический конденсатор - лейденская банка (Э. Клейст, П. Мушенбрук).
* 1746 г. Установлен закон сохранения момента количества движения (Л. Эйлер, Д. Бернулли). Вышел в свет труд М.В. Ломоносова "Экспериментальная физика". Вышел в свет труд Л. Эйлера "Новая теория света и цветов", в которой он придерживается волновой теории и считает различную длину волны причиной различия цветов.
* 1747 г. Л. Эйлер вывел формулу двояковыпуклой линзы. Исследование Б. Франклином атмосферного электричества, доказательство электрической природы молнии (подобные опыты провели в 1752...1753 гг. М.В. Ломоносов и Г. Рихман).
* 1749 г. П. Мушенбрук изобрел пирометр.
* 1750 г. Изобретение молниеотвода (Б. Франклин). В 1754 г. молниеотвод построил чех П. Дивиш.
* Б. Франклин сформулировал теорию электричества и закон сохранения электрического заряда.
* 1751 г. Открыт 28-й элемент - никель (Д. Кронштедт).
* 1752 г. Л. Эйлер выдвинул утверждение, что максимальная длина световой волны соответствует красным лучам, а минимальная - фиолетовым.
* 1752...1754 гг. Л. Эйлер проводит гидродинамическое исследование и выводит уравнение гидродинамики (уравнение Эйлера), вводит потенциал скоростей, записывает основное уравнение теории потенциала (уравнение Лапласа).
* 1753 г. Дж. Беккариа показал, что электрический заряд в проводнике распределяется по его поверхности.
* 1754 г. Дж. Блэйк открыл углекислый газ.
* 1755 г. Разработка И. Кантом гипотезы происхождения солнечной системы.
* 1756 г. Открытие М.В. Ломоносовым закона сохранения массы вещества в химических реакциях. Этот же закон в 1774 г. установил А. Лавуазье. Ф. Эпинус открыл явление пироэлектричества.
* 1757 г. Открытие скрытой теплоты и первые измерения теплоты плавления и парообразования (Дж. Блэйк).
* 1758 г. Английский оптик Дж. Доллонд сконструировал ахроматический объектив. Вышел в свет труд Р. Бошковича "Теория натуральной философии, приведенная к единому закону сил, существующих в природе", в которой сделана попытка на основании одной теории объяснить все физические явления.
* 1759 г. Разработка первой математической теории электрических и магнитных явлений (Ф. Эпинус).
* 1760 г. Введено понятие удельной теплоемкости. Положено начало калориметрии (Дж. Блэк). Вышел в свет труд И. Ламберта "Фотометрия, или об измерении и сравнении света, цветов и тени", в котором приведены основные понятия и законы фотометрии, в частности закон, названный его именем (закон Ламберта).
* 1762 г. Вышел в свет двухтомник "Введение в натуральную философию" П. Мушенбрука, представляющий собой физическую энциклопедию того времени.
* 1763 г. И.И. Ползунов разработал проект паровой машины (в 1765 г. машина была построена, а в 1766 г. начала эксплуатироваться).
* 1765 г. Вышел в свет "Трактат о движении твердых тел" Л. Эйлера (закончен в 1760 г.), в котором Л. Эйлер развил теорию вращения твердого тела около закрепленной точки.
* Вышли в свет "Письма к одной немецкой принцессе" Эйлера, в которых изложены его физические и философские взгляды.
* 1766 г. Открытие водорода (Г. Кавендиш).
* 1771 г. Дж. Пристли открыл фотосинтез.
* 1772 г. И. Вильке ввел единицу измерения тепла - калорию. Открыт 7-й элемент - азот (Д. Рутерфорд).
* 1774 г. Открыт 8-й элемент - кислород (Дж. Пристли). Открыты 17-й и 25-й элементы - хлор и марганец (К. Шееле).
* 1775 г. Усовершенствование электрофора (А. Вольта). Изобретен в 1757 г. Ф. Эпинусом.
* 1775 г. А. Лавуазье разработал основные положения кислородной теории, доказал сложный характер воздуха, объяснил горение, показал, что при дыхании поглощается кислород и образуется углекислый газ.
* 1777 г. И. Ламберт показал, что тепловые лучи, как и световые, распространяются прямолинейно.
* 1778 г. Открыт 42-й элемент - молибден (К. Шееле). Дж. С. Валлис, А. Бургманс и Ш. Кулон развили двухфлюидную теорию магнетизма.
* 1781 г. И. Вильке осуществил первые измерения удельной теплоемкости методом смешивания (он также ввел понятие водяного эквивалента и предложил новый метод определения удельной теплоемкости - по количеству льда, расплавленного исследуемым горячим телом). Установление законов трения (Ш. Кулон). А. Вольта изобрел чувствительный электроскоп с соломинками. В. Гершель открыл планету Уран. Открыт 52-й элемент - теллур (М. Рейхенштейн).
* 1783 г. Открыт 74-й элемент - вольфрам (Ж. и Ф. Эльгуйяр). Изобретен волосяной гигрометр (Г. Сосюр). А. Лавуазье и П. Лаплас изобрели калориметр и определили удельные теплоемкости многих твердых и жидких тел. Они открыли также, что удельная теплоемкость тела не является постоянной, а зависит от температуры.
* 1784 г. Ш. Кулон осуществил исследование упругого кручения нитей и построил крутильные весы. И. Гадолин дал формулу для температуры смеси. Сконструирован первый ахроматический микроскоп (Ф. Эпинус). Дж. Уатт построил универсальный паровой двигатель.
* 1785 г. Установление Ш. Кулоном основного закона электрического взаимодействия (закон Кулона). А. Лавуазье и Ж. Менье синтезировали воду из кислорода и водорода.
* 1786 г. Установление связи теплоты с электрической искрой (М. Ван Марум).
* 1786 г. Разработка новой химической номенклатуры (А. Лавуазье).
* 1787 г.Э. Хладни осуществил опыты по изучению колебаний пластин с образованием "фигур Хладни".
* Французский физик Ж. Шарль установил один из газовых законов, названный его именем (закон Шарля).
* 1788 г. Сжигая водород в кислороде при помощи искры, Г. Кавендиш получил воду.
* 1788 г. Вышел в свет труд французского ученого Ж. Лагранжа "Аналитическая механика", где выведены аналитические условия равновесия материальной точки и системы.
* Ш. Кулон распространил открытый им закон взаимодействия точечных электрических зарядов на взаимодействие точечных полюсов магнита.
* 1789 г. Открыты цирконий и уран (М. Клапрот).
* 1789 г. Разработана метрическая система единиц длины, массы, 1794 гг. силы и др. физических величин.
* 1791 г. Опубликован "Трактат о силах электричества при мышечном движении" Л. Гальвани, в котором содержалось открытие электрического тока (1780 г.). Открыт 22-й элемент - титан (В. Грегор).
* 1791...1792 гг. П. Прево выдвинул теорию теплового равновесия.
* 1794 г. Открыт 39-й элемент - иттрий (А.В. Гадолин).
* 1795 г. Установление пробоя твердого тела (М. Ван Марум).
* 1796 г. Э. Хладни установил законы колебания стержней, чем заложил основы экспериментальной акустики. А. Вольта открыл явление диффузии водорода и воздуха. Вышел в свет труд П. Лапласа "Изложение системы мира", в котором содержится его космогоническая гипотеза образования солнечной системы.
* 1797 г. Открыты бериллий и хром (Н. Вокелен).
* 1798 г. Г. Кавендиш при помощи крутильных весов измерил притяжение двух тел, подтвердив закон всемирного тяготения И. Ньютона, вычислил плотность Земли. Б. Румфорд осуществил опыты, свидетельствующие в пользу механической теории теплоты.
* 1799 г. А. Вольта сконструировал первый источник электрического тока - "вольтов столб" (электрическую батарею). Получение тепла от трения двух кусков льда (Г. Дэви).
* 1800 г. Открытие явления электролиза (У. Никольсон, А. Карлейль). В. Гершель открыл инфракрасные лучи. Открытие Т. Юнгом явления интерференции звука.
* 1801 г. Открытие ультрафиолетовых лучей (У. Волластон, И. Риттер). У. Волластон и Н. Готро дали теорию "вольтового столба" (впервые химическое объяснение механизма возникновения гальванического тока предложил в 1792 г. Дж. Фаброни). Открыт 23-й элемент - ванадий (дель Рио). Открыт 41-й элемент - ниобий (К. Гатчетт). Открытие закона парциальных давлений (Дж. Дальтон). Т. Юнг сформулировал принцип интерференции света.
* 1802 г. Открытие У. Волластоном линий поглощения в солнечном спектре, названных в дальнейшем "фраунгоферовыми" в связи с переоткрытием их в 1815 г. И. Фраунгофером.
* 1802 г. Осуществление Т. Юнгом опыта по получению интерференции света от двух отверстий. Наблюдение поляризации химического элемента. Открытие В.В. Петровым электрической дуги и осуществление с ней ряда опытов (плавление металлов, сжигание различных веществ). Электрическую дугу и подобные опыты осуществил в 1810 г. также Г. Дэви. Вышел в свет систематический труд по акустике Э. Хладни "Акустика". Исследование Ж. Гей-Люссаком расширения газов и открытие им зависимости изменения объема газа от температуры (закон Гей-Люссака). Этот закон открыл в этом же году и Дж. Дальтон. Открыт 73-й элемент - тантал (А. Экеберг).
* 1803 г. Открытие закона зависимости растворимости газов от их парциального давления (Дж. Дальтон). Дж. Дальтон ввел понятие атомного веса. Открыт 58-й элемент - церий (И. Берцелиус, В. Гизингер, М. Клапрот). Открыты 45-й и 46-й элементы - родий и палладий (У. Волластон). Открыт 77-й элемент - иридий (С. Теннант). Измерение Т. Юнгом длины волн разных цветов. Он получил для длины волны красного света значение - 0,7 микрона, для фиолетового - 0,42 микрона.
* 1804 г. Открыт 76-й элемент - осмий (С. Теннант).
* Т. Юнг выдвинул идею неподвижного, не увлекаемого Землей эфира (в 1818 г. идею частично увлекаемого эфира высказал О. Френель).
* 1805 г. Х. Гроттгус разработал теорию, объясняющую механизм химического разложения воды при прохождении тока. Открыто явление термоупругости (Гаух).
* 1806 г. П. Лаплас установил один из основных законов капиллярности (закон Лапласа).
* 1807 г. Установлено понижение температуры при адиабатическом расширении газа и повышение - при его сжатии (Ж. Гей-Люссак). Это явление отмечали также Э. Дарвин (1788 г.) и Дж. Дальтон (1802 г.). Введение Т. Юнгом модуля упругости (модуль Юнга). Открыты 11-й и 19-й элементы - натрий и калий (Г. Дэви).
* 1808 г. Открыты 12-й, 20-й, 38-й и 56-й элементы - магний, кальций, стронций и барий (Г. Дэви). Ж. Гей-Люссак открыл закон объемных отношений. Открыт 5-й элемент - бор (Ж. Гей-Люссак, Л. Тенар). Открытие Э. Малюсом поляризации света при отражении и закона, названного его именем (закон Малюса).
* 1811 г. Разработка А. Авогадро молекулярной гипотезы строения вещества и установление закона, названного его именем (закон Авогадро). Вышел в свет двухтомный "Курс механики" С. Пуассона.
* 1811 г. Открыт 53-й элемент - йод (Б. Куртуа). Открытие Д. Араго хроматической поляризации. Д. Араго обнаружил оптическую активность (у кварца). С. Пуассон распространил теорию потенциала на явления электростатики, сформулировав, в частности, важную теорему, названную его именем, - теорему Пуассона (в 1824 г. он распространил ее и на магнетизм).
* 1814 г. И. Берцелиус опубликовал таблицу атомных весов 41 химического элемента, взяв за основу атомный вес кислорода и введя обозначения элементов (химическую символику, применяемую и сейчас).
* 1814...1815 гг. Обнаружение И. Фраунгофером в солнечном спектре темных линий поглощения, названных его именем (фраунгоферовы линии). Эти линии также наблюдал еще в 1802 г. У. Волластон, однако не оценил свое открытие и неверно их интерпретировал.
* 1815 г. Английский ученый У. Проут выдвинул гипотезу о том, что атомы всех химических элементов выражаются целыми числами, т.е. являются комбинациями атомов водорода (гипотеза Проута). Открытие Ж. Био круговой поляризации и закона вращения плоскости поляризации света (закон Био). Он же установил существование правовращательных и левовращательных веществ (вращение плоскости поляризации света в кварце наблюдал еще в 1811 г. Д. Араго). Д. Брюстер открыл закон, названный его именем (закон Брюстера). О. Френель дополнил оптический принцип Гюйгенса, введя представление о когерентности элементарных волн и их интерференции (принцип Гюйгенса - Френеля).
* 1816 г. О. Френель осуществил опыт с двумя зеркалами (зеркала Френеля) для получения интерференции света. О. Френель и Д. Араго обнаружили, что лучи, поляризованные во взаимно перпендикулярных плоскостях, не интерферируют. Первое достаточно точное определение размеров молекулы (Т. Юнг).
* 1817 г. Открыт 3-й элемент - литий (А. Арфведсон). Открыт 48-й элемент - кадмий (Ф. Штромейер). Предположение о поперечности световых лучей (Т. Юнг, О. Френель). Создан биметаллический термометр (А. Бреге).
* 1818 г. Открыт 34-й элемент - селен (И. Берцелиус). Создание О. Френелем теории дифракции света. Г. Катер сконструировал прибор для определения ускорения силы тяжести в данном месте (оборотный маятник).
* 1819 г. Проведение О. Френелем опыта с бипризмой (бипризма Френеля) для получения интерференции света. Вышел в свет труд О. Френеля "Мемуар о дифракции света".
* 1819 г. Немецкий химик Э. Митчерлих открыл явление изоморфизма. Установление П. Дюлонгом и А. Пти закона, названного их именем (закон Дюлонга и Пти).
* 1820 г. Открытие Х. Эрстедом магнитного действия тока. А. Ампер установил правило, определяющее зависимость между направлением электрического тока и направлением магнитного поля, создаваемого этим током (правило Ампера). А. Ампер открыл взаимодействие электрических токов и установил закон этого взаимодействия (закон Ампера). А. Ампер высказал гипотезу молекулярных токов, положив в ее основу теорему эквивалентности токов и магнитов (теорема Ампера), в которой последовательно проводилась чисто токовая идея происхождения магнетизма. В гипотезе Ампера была предвосхищена в качественной форме современная электронная теория магнитных свойств атомов и веществ. А. Ампер высказал идею использования электромагнитных явлений для передачи сигналов. Д. Араго обнаружил намагничивание железных опилок электрическим током. Изобретен гальванометр (И. Швейггер). Открытие А. Ампером магнитного эффекта катушки с током (соленоида). Ж. Био и Ф. Савар открыли закон, определяющий напряженность магнитного поля прямого тока (закон Био-Савара). Определение Ф. Саваром пределов слышимости нормального уха человека. У. Николь изобрел прибор для получения линейно поляризованного света (призма Николя). Создан гигрометр Даниэля.
* 1821 г. Установлена зависимость сопротивления проводника от его длины, поперечного сечения и температуры (Г. Дэви). Получение М. Фарадеем вращения проводника с током в магнитном поле (создание модели электродвигателя). Т. Зеебек открыл термоэлектричество (эффект Зеебека). Широкое применение И. Фраунгофером дифракционных решеток для исследования спектров. Некоторые считают его изобретателем дифракционной решетки, однако принцип действия ее открыл еще в 1785 г. Д. Риттенхауз. К. Навье создал теорию упругости твердых тел.
* 1822 г. Французский ученый О. Коши заложил основы математической теории упругости. Вышел в свет труд Ж. Фурье "Аналитическая теория теплоты". В нем впервые использовались формулы размерностей.
* 1823 г. Создание термобатареи (Ж. Фурье, Х. Эрстед). Изобретено динамо (У. Стерджен). П. Барлоу построил раннюю модель электромотора (колесо Барлоу).
* 1823 г. Опубликован труд А. Ампера "Теория электродинамических явлений, выведенная исключительно из опыта". Открытие О. Френелем эллиптической и круговой поляризации света. О. Френель установил количественные законы преломления и отражения света (формулы Френеля). Открыт 14-й элемент - кремний (И. Берцелиус).
* 1824 г. Вышел в свет труд С. Карно "Рассуждения о движущей силе огня и о машинах, способных развивать эту силу", в котором приведены формулировка второго начала термодинамики, цикл Карно и теорема Карно. Открытие действия вращающейся металлической пластинки на магнитную стрелку магнетизма вращения (Д. Араго).
* 1825 г. Открыта анизотропия кристаллов (Э. Митчерлих). Открыт 35-й элемент - бром (Левиг). Л. Нобили изобрел астатический гальванометр. Создание У. Стердженом электромагнита.
* 1826 г. Ж. В. Понселе ввел понятие "работа" для произведения силы на путь, пройденный точкой ее приложения. Объединены закон Гей-Люссака с законом Бойля - Мариотта и записано уравнение газового состояния (Ж. Гей-Люссак). Создание Н. И. Лобачевским новой геометрии, отличной от евклидовой (геометрия Лобачевского).
* 1827 г. Г. 0м открыл закон, названный его именем (закон Ома), и ввел понятие электродвижущей силы, электропроводности и силы тока. Открытие английским ботаником Р. Броуном хаотического движения мелких частиц, взвешенных в растворе (броуновское движение). Открыт 13-й элемент - алюминий (Ф. Велер).
* 1828 г. Вышел в свет труд Дж. Грина "Опыт применения математического анализа в теориях электричества и магнетизма", содержащий понятие потенциальной функция и ряд теорем. У. Гамильтон теоретически предсказал явление конической рефракции, открытое экспериментально в 1833 г. Х. Ллойдом. Открыт 90-й элемент - торий (И. Берцелиус).
* 1829 г. К.Ф. Гаусс сформулировал принцип наименьшего принуждения.
* 1831 г. Открытие М. Фарадеем явления электромагнитной индукции (оно было известно также Дж. Генри). Дж. Генри и С. даль Негро независимо построили первый электродвигатель.
* 1832 г. И. Пикси построил генератор переменного тока. Создание абсолютной системы электрических и магнитных единиц (В. Вебер, К. Гаусс).
* 1832 г. Создание русским ученым П. Л. Шиллингом первого электромагнитного телеграфа. Американец С. Морзе предложил проект телеграфного аппарата, а в 1835 г. построил модель телеграфа (в 1833 г. простейшую телеграфную линию построили также К. Гаусс и В. Вебер). Дж. Генри открыл явление самоиндукции.
* 1833 г. Открытие Д. Брюстером флюоресценции. Установление М. Фарадеем законов электролиза.М. Фарадей первый заметил падение электрического сопротивления сернистого серебра с ростом температуры, что является характерным признаком полупроводников. Э. Х. Ленц сформулировал правило для определения направления электродвижущей силы индукции (закон Ленца).
* 1834 г. Б. Клапейрон вывел уравнение состояния идеального газа (уравнение Клапейрона). Б. Клапейрон разработал теорию обратимого кругового процесса Карно. Б. Клапейрон получил уравнение для конденсирующегося пара, находящегося в тепловом равновесии с жидкостью, распространенное в 1850 г. Р. Клаузиусом на другие фазовые переходы (уравнение Клапейрона-Клаузиуса). Ж. Пельтье открыл явление, названное его именем (эффект Пельтье). М. Фарадей постулировал существование ионов, экспериментальное доказательство их дал И. Гитторф в 1853 г. Б.С. Якоби изобрел электродвигатель с рабочим валом. Введение М. Фарадеем понятия о силовых линиях. Вышел в свет труд У. Гамильтона "Общий метод в динамике", в котором развит вариационный принцип наименьшего действия (принцип Гамильтона) и введена функция динамической системы, установлена аналогия между классической механикой и геометрической оптикой.
* 1835 г. Э. Х. Ленц экспериментально доказал уменьшение сопротивления металлов при охлаждении. Разработка Г. Кориолисом теории относительного движения. М. Фарадей доказал существование экстратоков при замыкании и размыкании цепи.
* 1836 г. Появление первого постоянного элемента с деполяризатором - элемента Даниэля.
* 1837 г. Обнаружение М. Фарадеем влияния диэлектриков на электростатическое взаимодействие. Он же высказал мысль о распространении электрического и магнитного действия через промежуточную среду. Изобретено электрическое реле. К. Пуйе построил тангенс-буссоль.
* 1838 г. Изобретение гальванопластики (Б. С. Якоби). Впервые измерено расстояние до звезды - 61 Лебедя (Ф.В. Бессель).
* 1839 г. Дж. Грин вывел основное уравнение теории упругости. Создание основ теории потенциала (К. Гаусс). Французский изобретатель Л. Дагер изобрел фотографию, усовершенствовав метод получения фотографических изображений на металле, предложенный в 1827 г. Ж. Ньепсом. Открыт 57-й элемент - лантан (К. Мосандер).
* 1840 г. Ч. Уитстон изобрел способ измерения сопротивления (мостик Уитстона). Дж. Джоуль установил явление магнитного насыщения. Разработка теории построения изображений в сложных оптических системах (К. Гаусс).
* 1841 г. Дж. Джоуль установил закон теплового действия тока (в 1842 г. его открыл также Э.Х. Ленц, отсюда и название - закон Джоуля - Ленца).
* 1842 г. Х. Допплер теоретически открыл явление, названное его именем (эффект Допплера). Открытие Ю. Майером закона сохранения энергии (независимо от него к открытию этого закона также пришли в 1843 г. Дж. Джоуль и в 1847 г. Г. Гельмгольц; последний расширил границы применения этого закона, взяв для рассмотрения не только механическую и тепловую энергию, но и другие виды энергии). Ю. Майер вывел уравнение, связывающее теплоемкость при постоянном объеме и давлении (уравнение Майера). Установление колебательного характера разряда конденсатора (Дж. Генри).
* 1843 г. Открытие Ж. Пуазейлем закона, названного его именем (закон Пуазейля). Первое измерение механического эквивалента теплоты (Дж. Джоуль). Открыты 65-й и 68-й элементы - тербий и эрбий (К. Мосандер). М. Фарадей экспериментально доказал закон сохранения электрического заряда. В. Вебер установил закон взаимодействия двух движущихся зарядов.
* 1844 г. Открыт 44-й элемент - рутений (К.К. Клаус). М. Фарадей выдвинул идею поля.
* 1845 г. Открытие М. Фарадеем диамагнетизма и парамагнетизма (он же ввел эти термины). Намного ранее голландский ученый А. Бургманс экспериментально установил притяжение парамагнетиков и отталкивание диамагнетиков, не вводя этих понятий. М. Фарадей открыл магнитное вращение плоскости поляризации света. Ж. Дюамель предложил определять массу тела как отношение приложенной к телу силы к приобретенному им ускорению. Голландский физик Ч. Бейс-Баллот обнаружил эффект Допплера для акустических волн.
* 1845 г. Открытие закономерностей в распределении электрического тока в разветвленной цепи (Г. Кирхгоф). Дж, Стокс разработал математическую теорию движения вязкой жидкости (уравнение Навье - Стокса).
* 1845...1847 гг. Разработка первой математической теории электромагнитной индукции и установление закона электромагнитной индукции для замкнутых проводников (Ф. Нейман).
* 1846 г. И. Галле по расчетам У. Леверье открыл новую планету - Нептун, что было триумфом механики Ньютона (существование Нептуна в этом же году предсказал и Дж. Адамс). У. Гроув экспериментально доказал электролитическую диссоциацию воды.
* 1847 г. Вышел в свет труд Г. Гельмгольца "О сохранении силы", в котором с исчерпывающей полнотой сформулирован закон сохранения энергии. Разработка О. Моссоти теории диэлектриков, получившей дальнейшее развитие в работах Р. Клаузиуса (1879 г.).
* 1848 г. Введение У. Томсоном понятия абсолютной температуры и абсолютной шкалы температур (шкала Кельвина).
* 1849 г. Установление связи между линиями поглощения и излучения (Л. Фуко). Первое измерение скорости света в лабораторных условиях И. Физо (метод зубчатого диска).
* 1850 г. Измерение скорости света при помощи вращающегося зеркала (Л. Фуко). Л. Фуко измерил скорость света в воде, окончательно подтвердив тем самым волновую теорию света. Формулирование Р. Клаузиусом второго начала термодинамики (в 1851 г. свою формулировку предложил У. Томсон). Введение понятия внутренней энергии (Р. Клаузиус).
* 1851 г. Л. Фуко при помощи маятника экспериментально доказал вращение Земли вокруг оси (опыт Фуко). У. Томсон открыл изменение удельного сопротивления ферромагнетиков при их намагничивании (эффект Томсона). Г. Румкорф изобрел индукционную катушку (катушка Румкорфа). Открыто явление рассеяния света малыми частицами вещества (Брюкке). И. Физо обнаружил влияние движения среды на скорость распространения света в ней (опыт Физо). Дж. Стокс установил закон в гидродинамике, названный его именем (закон Стокса).
* 1852 г. Изобретение гироскопа (Л. Фуко). Описано явление флюоресценции (Дж. Стоке). Установление Дж. Стоксом факта, что длина волны света люминесценции больше длины волны возбуждающего света (правило Стокса). Г. Магнус открыл явление возникновения поперечной силы, действующей на вращающееся тело в набегающем на него потоке жидкости или газа (эффект Магнуса). Дж. Стокс открыл прозрачность кварца для ультрафиолетовых лучей. У. Томсон выдвинул гипотезу (ошибочную) тепловой смерти Вселенной.
* 1853 г. Создана термодинамическая теория термоэлектричества (Р. Клаузиус). Установление Г. Видеманом и Р. Францем закона, названного их именем (закон Видемана - Франца). У. Томсон вывел формулу для периода электрических колебаний (формула Томсона).
* 1853...1854 гг. Открыто явление охлаждения газа при адиабатическом сжатии - эффект Джоуля Томсона (Дж. Джоуль, У. Томсон).
* 1854 г. Г. Риман создал геометрию, отличную от евклидовой (риманова геометрия). Первая детальная математическая разработка идеи магнитных диполей (В. Вебер). М. В. Остроградский построил общую теорию удара.
* 1855 г. Изобретение Г. Гейсслером ртутного вакуумного насоса. Ю. Плюккер сконструировал трубки для исследования разрядов в газах (трубки Плюккера). Разработан способ уменьшения индукционных токов в сплошных телах путем деления последних на части (Л. Фуко).
* 1856 г. В. Вебер и Р. Кольрауш определили отношение электромагнитных и электростатических единиц (скорость распространения электрического импульса) и обнаружили ее совпадение со скоростью света. Построен первый спектрометр (Мейерштейн). Открытие У. Томсоном термодинамического эффекта, названного его именем (эффект Томсона). Ж. Жамен построил интерференционный рефрактометр.
* 1857...1862 гг. Разработка Р. Клаузиусом основ кинетической теории газов. В ее создании принимали также участие Л. Больцман и Дж. Максвелл.
* 1858 г. Г. Гельмгольц заложил основы теории вихревого движения жидкости.
* 1859 г. Р. Планте изобрел свинцовый аккумулятор. Открытие Г. Кирхгофом и Р. Бунзеном спектрального анализа. Г. Кирхгоф открыл закон теплового излучения, названный его именем (закон Кирхгофа). Ю. Плюккер установил, что спектр электрического разряда в газе характеризует природу газа. Открыты катодные лучи (Ю. Плюккер), в 1869 г. их наблюдал также И. Гитторф.
Второй этап развития естествознания
(60-е годы XIX в. - 1894 г.)
Второй этап начинается с создания в 1860...1865 гг. Дж. Максвеллом общей теории электромагнитных процессов. Используя концепцию поля М. Фарадея, он дал точные пространственно-временные законы электромагнитных явлений в виде системы известных уравнений - уравнений Максвелла для электромагнитного поля.
Теория Максвелла получила дальнейшее развитие в трудах Г. Герца и Г. А. Лоренца, в результате чего была создана электродинамическая картина мира, которой и завершается период классической физики.
* 1860...1865 гг. Создание Дж Максвеллом теории электромагнитного поля (первые дифференциальные уравнения поля записаны им в 1855 г.).
* 1860 г. Введение Г. Кирхгофом понятия абсолютно черного тела. Открыт 55-й элемент - цезий (Р. Бунзен, Г. Кирхгоф). Д.И. Менделеев открыл существование критической температуры. Вычисление длины свободного пробега молекул (Р. Клаузиус). Дж. Максвелл начал разрабатывать кинетическую теорию газов, применяя представления теории вероятностей. Установил статистический закон распределения молекул газа по скоростям (распределение Максвелла). Построен двигатель постоянного тока с коллектором (кольцевой электродвигатель) и изобретена динамомашина (А. Пачинотти).
* 1861 г. А. М. Бутлеров развил теорию химического строения. Введение Дж. Максвеллом понятия о токе смещения. Интерпретация "фраунгоферовых линий" как линий поглощения. Открыт 37-й элемент - рубидий (Р. Бунзен, Г. Кирхгоф). Открыт 81-й элемент - таллий (У. Крукс).
* 1862 г. Установление Р. Клаузиусом неравенства интеграл (дробь) dQ/T < 0 (неравенство Клаузиуса). Открытие аномальной дисперсии света (Ф. Леру), ее наблюдал также в 1870 г. К. Кристиансен.
* 1863 г. Открыт 49-й элемент - индий (Ф. Рейх, Т. Рихтер).
* 1865 г. Дж. Максвелл постулировал существование электромагнитных волн. Дж. Максвелл выдвинул идею электромагнитной природы света. Введение Р. Клаузиусом понятия энтропии.
* 1866 г. И. Лошмидт рассчитал диаметр молекулы. А. Кундт разработал метод пылевых фигур для определения длины звуковой волны и скорости звука.
* 1867 г. У. Хеггинс обнаружил эффект Допплера для света. Открытие Ч. Уитстоном принципа самовозбуждения электромагнитных машин.
* 1868 г. Разработка Л. Больцманом статистики, названной его именем (статистика Больцмана).
* 1869 г. Открытие Д.И. Менделеевым периодического закона химических элементов и создание периодической системы элементов. Независимо периодическую закономерность установил Л. Мейер. Т. Эндрюс открыл явление непрерывности жидкого и газообразного состояния, введя понятие критической точки (критическое состояние наблюдал в 1822 г. Ш. Каньяр де Ла Тур, существование критической температуры в 1860 г. открыл Д.И. Менделеев). Создание Г. Гельмгольцем колебательного контура из индуктивности и емкости.
* 1870 г. Р. Клаузиус доказал теорему вириала. Развитие Г. Гельмгольцем теории электродинамических процессов в проводящих неподвижных телах.
* 1871 г. Создание холодильной машины, в которой охлаждение достигалось за счет расширения газа (К. Линде). Д. И. Менделеев предсказал существование скандия, галлия и германия.
* 1872 г. Э. Аббе разработал теорию образования изображения в микроскопе. У. Томсон изобрел электрический счетчик. Изобретение А.Н. Лодыгиным электрической лампы накаливания. В 1879 г. Т. Эдисон создал лампу накаливания с угольной нитью достаточно долговечной конструкции и удобную для промышленного изготовления. Л. Больцман вывел основное кинетическое уравнение газов. Л. Больцман сформулировал H-теорему. Л. Больцман установил связь энтропии физической системы с вероятностью ее состояния и доказал статистический характер второго начала термодинамики. Ф. Клейн предложил так называемую "эрлангенскую программу", где произвел классификацию различных геометрических дисциплин, исходя из допустимых в них групп преобразований.
* 1873 г. Ван дер Ваальс вывел уравнение состояния реальных газов (уравнение Ван дер Ваальса). Открытие внутреннего фотоэффекта (фотопроводимости) английским физиком У. Смитом. Дж. Максвелл теоретически определил величину давления света (идея светового давления выдвинута была И. Кеплером в 1619 г.). В 1876 г. А. Бартоли сделал это, исходя из термодинамических соображений. Начало систематического изучения магнитных свойств ферромагнетиков и снятие первой кривой магнитной проницаемости ферромагнетика (А.Г. Столетов).
* 1874 г. Введение Н. А. Умовым понятия о скорости и направлении движения энергии и потоке энергии (вектор Умова). Применительно к электромагнитной энергии это сделал в 1884 г. Дж. Пойнтинг (вектор Умова-Пойнтинга). Дж. Стоней высказал мысль о дискретности электрического заряда и вычислил его величину (опубликовано в 1881 г.), в 1891 г. он предложил для постулированной единицы электрического заряда название электрон. Ф. Кольрауш установил возрастание проводимости электролитов с ростом температуры. Разработка Г. Гельмгольцем теории дисперсии (в рамках "упругой" теории света).
* 1874 г. Д. И. Менделеев, обобщив уравнение Клапейрона, вывел уравнение состояния идеального газа (уравнение Менделеева - Клапейрона).
* 1874...1875 гг. Я. Вант-Гофф разработал теорию пространственного размещения атомов в молекулах органических соединений.
* 1875...1878 гг. Разработан метод термодинамических потенциалов, сформулированы общие условия термодинамического равновесия, разработана общая теория фаз и теория капиллярности (Дж. Гиббс).
* 1875 г. Открытие Дж. Керром явления возникновения двойного лучепреломления в оптически изотропных веществах, помешенных в однородное электрическое поле (электрооптический эффект Керра). Обнаружение Г. Роуландом магнитного поля конвекционных токов (опыт Роуланда). Открыт 31-й элемент - галлий (Л. де Буабодран). Создание У. Круксом радиометра (радиометр Крукса). Г. Липпман вывел основное уравнение теории электрокапиллярности.
* 1876 г. Изобретение П.Н. Яблочковым первого практически пригодного источника электрического освещения (свеча Яблочкова). Изобретение А. Беллом телефонного аппарата. Открытие Дж. Керром магнитооптического эффекта. Изготовлен селеновый фотоэлемент (В. Адаме, Р. Дэй).
* 1877 г. Получен жидкий кислород (Л. Кальете, Р. Пикте). Проведены первые измерения осмотического давления (В. Пфеффер). Изобретение фонографа (Т. Эдисон).
* 1878 г. Открыт 67-й элемент - гольмий (Ж. Соре). Открыт 70-й элемент - иттербий (Ж. Мариньяк). Изобретение микрофона (Д. Юз). Изобретение П.Н. Яблочковым первого трансформатора (в 1882 г. трансформатор также построили И, Ф. Усагин и Л. Голар). Э. Аббе построил первый современный оптический микроскоп, показал ограниченность разрешающей способности оптического микроскопа длиной волны света.
* 1878...1882 гг. Эксперименты А. Майкельсона по точному определению скорости света.
* 1879 г. Открытие Э. Холлом гальваномагнитного явления, названного его именем (эффект Холла). Открыт 62-й элемент - самарий (Л. де Буабодран).
* Открыт 21-й элемент - скандий (Л. Нильсон). Развивая идеи О.Ф. Моссоти, Р. Клаузиус разработал теорию поляризации диэлектриков и установил соотношение между диэлектрической проницаемостью и плотностью диэлектрика (уравнение Клаузиуса-Моесоти).
* 1879 г. Открыт 69-й элемент - тулий (П. Клеве). Установление И. Стефаном закона пропорциональности энергии излучения абсолютно черного тела четвертой степени абсолютной температуры. В 1884 г. этот же закон теоретически выведен Л. Больцманом. Отсюда его название - закон Стефана - Больцмана.
* 1880 г. Доказана возможность передачи электроэнергии на большие расстояния без значительных потерь при условии повышения напряжения (Д.А. Лачинов). Открыт 64-й элемент - гадолиний (К. Мариньяк). Введение понятия гистерезиса (Э. Варбург). Открытие пьезоэлектрического эффекта (Пьер и Поль Жан Кюри). Г. А. Лоренц независимо от датского физика Л. Лоренца дал формулу зависимости показателя преломления вещества от его плотности (формула Лоренц - Лоренца). К этой формуле Л. Лоренц пришел еще в 1869 г.
* 1881 г. Введение Дж. Дж. Томсоном понятия электромагнитной массы. Открытие сверхтонкой структуры спектральных линий (А. Майкельсон). Установлены международные единицы измерения физических величин (ампер, вольт, ом, джоуль и др.). Изобретение С. Ленгли болометра. Изобретен термоэлектрический генератор (Л. Голар).
* 1882 г. Г. Гельмгольц ввел понятие свободной энергии. Г. Роуланд изобрел вогнутую дифракционную решетку. Вступила в строй первая электростанция (Т. Эдисон).
* 1883 г. Введение волновых чисел (В. Хартли). Введено понятие числа Рейнольдса (О. Рейнольдс).
* 1884 г. Л. Больцман впервые применил к излучению принципы термодинамики. Открытие Т. Эдисоном явления термоионной эмиссии (эффект Эдисона).
* 1885 г. И. Бальмер обнаружил закономерность в спектральных линиях водорода и вывел формулу, названную его именем (формула Бальмера). Открыты 59-й и 60-й элементы - неодим и празеодим (А. фон Вельсбах).
* 1886 г. Открытие каналовых лучей (Э. Гольдштейн). Установление Р. Этвешем зависимости молекулярной поверхностной энергии от температуры (закон Этвеша). Изготовлены первые полупроводниковые выпрямители на основе селена (К. Фриттс). Открыт 66-й элемент - диспрозий (Л. де Буабодран). Открыт 9-й элемент - фтор (А. Муассан). Открыт 32-й элемент - германий (К. Винклер).
* 1887 г. Г. Герц сконструировал генератор электромагнитных колебаний (вибратор Герца). Проведение А. Майкельсоном и Э. Морли опыта по обнаружению "эфирного ветра" - влияния движения Земли на скорость света (опыт Майкельсона - Морли). С точностью до 5 км/сек было показано, что скорость света одинаково независима от того, распространяется ли свет по направлению орбитального движения Земли или перпендикулярно ему. В 1881 г. подобный опыт проводил сам Майкельсон. Разработана теория электролитической диссоциации (С. Аррениус). Разработка М. Планком термодинамической теории разбавленных растворов. Г. Гейтель и Ю. Эльстер открыли эмиссию отрицательных зарядов из нити накаливания (явление термоэлектронной эмиссии). Дж, Рэлей обнаружил явление магнитного последействия, или магнитной вязкости. Открытие внешнего фотоэффекта (Г. Герц, В. Гальвакс, А. Риги). Изобретение шведом К. Лавалем паровой турбины.
* 1888 г. Г. Герц опытным путем обнаружил электромагнитные волны. Открытие А. Г. Столетовым закона внешнего фотоэффекта (закон Столетова). И. Ридберг ввел универсальную постоянную (постоянная Ридберга) и предложил приближенные формулы для частот линий спектральных серий щелочных и щелочноземельных металлов. В. Рентген доказал, что ток связанных зарядов (рентгенов ток), возникающий при движении наэлектризованного диэлектрика, тождественный току проводимости (опыт Рентгена). Открыто явление вращающегося магнитного поля (Н. Тесла, Г. Феррарис). Создание генератора трехфазного тока (М.И. Доливо-Добровольский). Доказана тепловая природа броуновского движения (Л. Гюи).
* 1889 г. О. Винер обнаружил существование стоячих световых волн (опыт Винера). Дж. Гопкинсон открыл явление резкого возрастания магнитной проницаемости ферромагнетиков в слабом магнитном поле вблизи точки Кюри (эффект Гопкинсона). И. Ридберг предположил, что спектры испускания химических элементов должны привести к пониманию периодической системы. Р. Этвеш с точностью до 10-9 доказал равенство инертной и тяжелой масс.
* 1890 г. Создание асинхронного короткозамкнутого двигателя трехфазного тока (М.И. Доливо-Добровольский). Изобретен трансформатор трехфазного тока (М.И. Доливо-Добровольский). Г. Герц и О. Хевисайд придали уравнениям Максвелла стройную математическую (симметрическую) форму (уравнения Максвелла - Герца).
* 1890 г. Г. Герц предпринял попытку описать электромагнитные явления в движущихся средах на основе электродинамики Максвелла. Э. Бранли изобрел когерер.
* 1890...1895 гг. Г. Кайзер, К. Рунге и Ф. Пашен получили ряд формул для спектральных серий различных элементов.
* 1891 г. М.И. Доливо-Добровольский впервые осуществил электропередачу трехфазного тока. Изобретен высокочастотный трансформатор (Н. Тесла). Г. Герц показал, что катодные лучи способны проникать через тонкие пластинки, и заложил тем самым основу для изучения строения вещества. Изобретение Г. Липпманом цветной фотографии, получение первой цветной фотографии солнечного спектра.
* 1892 г. Создание электронной теории дисперсии (Г. А. Лоренц). Г. А. Лоренц для объяснения отрицательного результата опыта Майкельсона - Морли высказал гипотезу о сокращении размеров тел в направлении движения (сокращение Фитцджеральда - Лоренца). В 1891 г. эту же гипотезу независимо выдвинул Дж. Фитцджеральд. Изобретен сосуд Дьюара (Дж. Дьюар). Б. Л. Розинг высказал идею о существовании внутри ферромагнетика "особого молекулярного поля". Проведение А. Майкельсоном и Р. Бенуа эксперимента по сравнению длины эталонного метра с длиной световой волны.
* 1892...1895 гг. Создание Г. А. Лоренцом классической электронной теории.
* 1893 г. В. Вин открыл два закона излучения абсолютно черного тела (закон излучения Вина и закон смещения Вина). Введение Б.Б. Голициным понятия температуры излучения абсолютно черного тела. А. Блондель изобрел электромагнитный осциллограф. Положено начало интерференционной микроскопии (Дж. Сиркс).
* 1894 г. Использование О. Лоджем в качестве индикатора электрических колебаний трубки с опилками, названной им когерером (детектор герцовых волн). А. Зоммерфельд дал строгое решение задачи о дифракции плоских волн на плоском полубесконечном отражающем экране. П. Кюри сформулировал принцип, позволяющий определять симметрию кристалла, находящегося под каким либо воздействием (принцип Кюри). Открыт 18-й элемент - аргон (У. Рамзай и Дж. Рэлей). Открыт 2-й элемент - гелий (У. Рамзай). Немецкий ученый Поккельсон описал необычные диэлектрические, пьезоэлектрические и электрооптические свойства сегнетовой соли. А.С. Попов изобрел антенну.
Период с 1895 г. по 1904 г. является периодом революционных открытий и изменений, прежде всего в физике. Именно она переживала в это время наиболее глубокий процесс обновления, перехода к новой, современной физике, фундамент которой заложили специальная теория относительности и квантовая теория.
Период современной физики
Период современной физики начинается с 1905 г - года создания А. Эйнштейном специальной теории относительности и превращения гипотезы квантов М. Планка в теорию квантов света. Это продемонстрировало отход от классических представлений и понятий и положило начало созданию новой физической картины мира - квантово-релятивистской. Переход от классической физики к современной характеризовался не только возникновением новых идей, открытием новых неожиданных фактов и явлений, но и преобразованием ее духа в целом, возникновением нового способа физического мышления, глубоким изменением методологических принципов. В этом периоде целесообразно выделить три этапа:
1. Первый этап (1905...1931 гг.) - характеризуется широким использованием идей релятивизма и квантов и завершается становлением квантовой механики.
2. Второй этап - этап субатомной физики (1932...1954 гг.), физики проникли в мир атомного ядра.
3. Третий этап - этап субъядерной физики и физики космоса, отличительной особенностью которого является изучение явлений в новых пространственно-временных масштабах. При этом за начало отсчета условно можно взять 1955 г., когда физики проникли в мир нуклона, в мир элементарной частицы.
* 1905 г. А. Пуанкаре и А. Эйнштейн установили ковариантность уравнений Максвелла относительно "группы Лоренца". А. Эйнштейн выдвинул гипотезу о квантовом характере светового излучения (фотонная теория света). Он открыл закон взаимосвязи массы и энергии, предложил специальный принцип относительности, принцип постоянства скорости света и на их основе создал специальную теорию относительности, содержащую новые пространственно-временные представления. Совместно с квантовой теорией она составила фундамент физики XX в. Обнаружен эффект Доплера в каналовых лучах. Объяснение А. Эйнштейном законов фотоэффекта на основании существования квантов света, или фотонов. Разработка П. Ланжевеном классической теории диа- и парамагнетизма. Э. Швейдлер установил статистический характер закона превращения химических элементов, подтвержденный экспериментально в 1906 г.
* 1905...1906 гг. А. Эйнштейн и М. Смолуховский дали последовательное объяснение броуновского движения на основе молекулярно-кинетической теории.
* 1906 г. Изобретен триод (Л. Форест). М. Планк вывел уравнения релятивистской динамики, получив выражения для энергии и импульса электрона, ввел термин "теория относительности". Открыт 71-й элемент - лютеций (Д. Урбен). Открыта односторонняя проводимость у некоторых полупроводников и создан кристаллический детектор (К. Браун). Т. Лайман открыл спектральную серию атома водорода (серия Лаймана). Установление В. Нернстом третьего начала термодинамики (теорема Нернста). Предсказание им эффекта "вырождения газа". Ч. Варила открыл характеристические рентгеновские лучи. Э. Резерфорд обнаружил рассеяние альфа-частиц.
* 1907 г. А. Эйнштейн ввел принцип эквивалентности гравитации и инерции, являющийся фундаментом общей теории относительности, и, исходя из него, вычислил красное смещение света в поле тяготения Солнца. Б. Л. Розинг изобрел первую электронную систему получения телевизионного изображения при помощи электроннолучевой трубки (в 1911 г. продемонстрировал прием простых геометрических фигур). Выдвинута гипотеза о существовании в ферромагнетиках участков самопроизвольной намагниченности и разработана первая статистическая теория ферромагнетизма (П. Вейсс). Подобную идею высказал еще в 1892 г. Б. Л. Розинг. Г. Минковский сформулировал точные инвариантные уравнения поля для движущихся тел. Дж. Пирс доказал электрическую природу явления выпрямления. М. Планк и А. Эйнштейн провели обобщение термодинамики в рамках специальной теории относительности. Открытие Э. К.Оттоном и А. Мутоном явления двойного лучепреломления в веществах, помещенных в магнитное поле, при распространении света в направлении, перпендикулярном полю (эффект Коттона - Мутона). Первое определение длины волны рентгеновских лучей (В. Вин). Разработка А. Эйнштейном первой квантовой теории теплоемкости твердых тел.
* 1908 г. А. Бухерер провел опыт, окончательно подтвердивший справедливость релятивистской формулы Лоренца для зависимости массы от скорости. В. Ритц улучшил предложенные в 1888 г. И. Ридбергом приближенные формулы для частот спектральных серий, установив один из основных принципов систематики атомных спектров - комбинационный принцип (принцип Ридберга - Ритца). Г. Гейгер и Э. Резерфорд сконструировали прибор для регистрации отдельных заряженных частиц. В 1928 г. Гейгер усовершенствовал его с В. Мюллером (счетчик Гейгера - Мюллера). Г. Минковский высказал идею объединения трех измерений пространства и времени в одно четырехмерное пространство (пространство Минковского) и развил современный четырехмерный аппарат теории относительности. Ж. Перрен осуществил эксперименты по исследованию 1913 гг. броуновского движения, окончательно доказавшие реальность существования молекул. М. Смолуховский разработал теорию критической опалесценции. Получение Г. Камерлинг-Оннесом жидкого гелия при температуре 4,2°К. Ф. Пашен обнаружил спектральную серию атома водорода в инфракрасной области (серия Пашена). Э. Грюнейзен установил, что отношение коэффициента теплового расширения к теплоемкости твердого тела не зависит от температуры (закон Грюнейзена).
* 1909 г. Доказано, что альфа-частицы являются дважды ионизированными атомами гелия (Э. Резерфорд, Т. Ройдс). Разработан новый метод количественного изучения аномальной дисперсии света - "метод крюков" (Д. С. Рождественский).
* 1910 г. В. де Гааз разработал модель атома, в которой впервые сделана попытка связать квантовый характер излучения со структурой атома. Внедрение фотоэлементов в технику (Ю. Эльстер, Г. Гейтель). Прообразом фотоэлемента была еще установка А. Г. Столетова (1888 г.) по исследованию фотоэффекта. Обнаружение космологического красного смещения в спектрах галактик (В. Слайфер). Это смещение, как было показано со временем, связано с эффектом разбегания галактик. Первое определение энергии бета-частиц по их отклонению в магнитном поле (О. Байер, О. Ган). Получен металлический радий (М. Склодовская-Кюри, А. Дебьерн).
* 1911 г. А. Зоммерфельд заметил, что постоянная Планка имеет размерность механического действия и предложил произвести квантование действия в ряде задач. А. Эйнштейн доказал искривление световых лучей в поле тяготения Солнца. Г. Гейгер и Дж. Нэттол установили зависимость между временем жизни и энергией распада радиоактивных ядер (закон Гейгера - Нэттола). Дж. Дж. Томсон разработал "метод парабол" для определения относительных масс частиц ионных пучков. Изготовлен первый международный радиевый эталон (М. Склодовская-Кюри, А. Дебьерн). Открытие Г. Камерлинг-Оннесом сверхпроводимости (обнаружил бесконечную проводимость, получив в металлическом кольце незатухающий ток). Постулирование П. Вейссом кванта магнитного момента - магнетона. Независимо от П. Вейсса магнетон предсказал П. Ланжевен и вычислил его величину. Э. Резерфорд дал формулу для эффективного поперечного сечения рассеяния нерелятивистских заряженных точечных частиц, взаимодействующих по закону Кулона (формула Резерфорда). Э. Резерфорд построил теорию рассеяния альфа-частиц в веществе, открыл атомное ядро и создал планетарную модель атома. Экспериментально доказана дискретность электрического заряда и впервые достаточно точно измерена величина заряда электрона (Р. Милликен).
* 1912 г. А.И. Бачинский установил закон вязкости жидкостей (закон Бачинского). В. Гесс открыл космические лучи. В 1900...1901 гг. к мысли о существовании ионизирующего воздействия, способного проникать через толстые слои грунта, пришел Ч. Вильсон. В 1900 г. неизвестный источник ионов в воздухе заметили также Г. Гейтель и Ю. Эльстер. Дж. Нордстрем предложил теорию гравитации, обобщающую закон тяготения Ньютона в соответствии с требованиями специальной теории относительности и принципом эквивалентности. Л. Брэгг сформулировал условие дифракции падающего на кристалл монохроматического потока рентгеновских лучей. Это же уравнение, связывающее длину волны рентгеновского излучения с периодом решетки кристалла, дал в 1913 г. также Ю.В. Вульф (отсюда и название - формула Брэгга - Вульфа). М. Абрагам предложил теорию гравитации, обобщающую закон Ньютона, но не учитывающую принцип эквивалентности. Открытие П. Дебаем закона зависимости теплоемкости от абсолютной температуры (закон теплоемкости Дебая). Открыто явление дифракции (интерференции) рентгеновских лучей при прохождении их через кристаллы, что окончательно подтвердило их электромагнитную природу (М. Лауэ, В. Фридрих, П. Книппинг). П. Дебай развил упрощенное представление твердого тела в виде изотропной упругой среды (модель твердого тела Дебая). П. Эвальд развил теорию поляризации диэлектрических кристаллов. Построен спектрометр с магнитной фокусировкой (Дж. Даныш). Р. Милликен проверил уравнение Эйнштейна для фотоэффекта и вычислил из него постоянную Планка. Развита теория колебаний кристаллической решетки (П. Дебай, М. Борн, Т. Карман). Разработана теория интерференции рентгеновских лучей на кристаллах и предложено использовать их как своеобразные дифракционные решетки для рентгеновских лучей (М. Лауэ). Установление А. Эйнштейном основного закона фотохимии (закон Эйнштейна). Ф. Пашен и Э. Бак открыли эффект, названный их именем (эффект Пашена - Бака). Ч. Вильсон изобрел прибор для наблюдения следов заряженных частиц (камера Вильсона). В 1923 г. П.Л. Капица и Д.В. Скобельцын впервые поместили камеру в сильное магнитное поле и наблюдали искривление треков частиц. Экспериментальное доказательство периодичности атомной структуры кристаллов, существования кристаллической решетки (Г. и Л. Брэгги).
* 1913...1914 гг. Г. Мозли установил зависимость между частотой спектральных линий характеристического рентгеновского излучения элемента и его порядковым номером (закон Мозли) и доказал равенство заряда ядра атома порядковому номеру его элемента. Предсказано диффузионное рассеяние рентгеновских лучей колебаниями кристаллической решетки (П. Дебаи, Л. Бриллюэн).
* 1913 г. А. Эйнштейн и М. Гроссман отождествили гравитационное поле с 10-компонентным метрическим тензором геометрии Римана и предложили теорию тяготения, учитывающую принцип эквивалентности. В.К. Аркадьев дал феноменологическое описание и первую теорию магнитных спектров, заложив основы магнитной спектроскопии. В. К. Аркадьев обнаружил избирательное поглощение радиоволн в ферромагнетиках (эффект Аркадьева), что было по существу открытием ферромагнитного резонанса. Он же разработал общую макроскопическую теорию электромагнитного поля в ферромагнитных металлах. Введено понятие дефекта массы (П. Ланжевен). Г. Брэгг изобрел рентгеновский спектрометр. Г. Ми построил теорию тяготения, основывающуюся на специальной теории относительности, но не удовлетворяющую принцип эквивалентности. Дж. Франк и Г. Герц экспериментально доказали существование дискретных уровней энергии атомов (опыты Франка - Герца). Использование триода для генерирования незатухающих электрических колебаний (А. Мейсснер). Обнаружение Г. Камерлинг-Оннесом разрушения сверх-, проводимости под влиянием сильных магнитных полей и токов. Открытие явления расщепления спектральных линий в электрическом поле. Впервые (1899 г.) обратил внимание на возмущение атомов электрическим полем В. Фогт. Н. Бор, применив идею квантования энергии к теории планетарного атома, сформулировал три квантовых постулата, которые характеризуют особенности движения электронов в атоме и разработал первую квантовую теорию атома водорода (теория атома Бора), ввел главное квантовое число. Положено начало рентгеноструктурному анализу (Г. и Л. Брэгги, Ю.В. Вульф) и рентгеновской спектроскопии. Создан магнитный спектрометр с фокусировкой и фотографической регистрацией (Дж. Даныш, Э. Резерфорд, Г. Робинсон). Сформулировано положение, что заряд ядра атома численно равен порядковому номеру соответствующего элемента в периодической таблице (А. Ван ден Брук). Сформулировано представление об изотопах элементов и введен термин "изотопы" (Ф. Содди). Впервые изотопы были открыты Дж. Дж. Томсоном, который в 1912 г. обнаружил существование атомов неона с массой 20 и 22. Мысль о неодинаковости атомов одного и того же элемента высказал в 1886 г. У. Крукс. Установление И. Ленгмюром закона для термоионного тока (закон Ленгмюра). Установлено, что различные изотопы свинца являются конечным продуктом трех естественных радиоактивных семейств. Ф. Астон предложил метод газовой диффузии для разделения изотопов. Ф. Седди и К. Фаянс независимо друг от друга установили правило смещения при радиоактивном распаде (закон Содди - Фаянса). Это сделал также А. С. Рассел. Ч. Бялобжеский высказал идею о лучистом переносе энергии в звездах. Э. Резерфорд предсказал протон. А. Ван ден Брук выдвинул гипотезу строения атомных ядер из протонов и электронов (протонно-электронная гипотеза). Однако с годами последняя привела ко многим противоречиям. В 1932 г. протонно-электронная гипотеза была заменена протонно-нейтронной.
* 1914...1915 гг. А. Эйнштейн вывел полевые уравнения для метрического тензора и вычислил гравитационное отклонение света и смещение перигелия Меркурия.
* 1914 г. В. Коссель объяснил возникновение рентгеновских спектров излучения, исходя из представлений об электронных оболочках атома, которые создают вокруг ядра последовательные слои. Дж. Чэдвик открыл непрерывный спектр энергии бета-излучения. Доказана идентичность рентгеновских спектров изотопов, чем окончательно подтверждено равенство порядковых номеров у изотопов данного элемента (Э. Резерфорд, Э. Андраде). Доказано существование стабильных изотопов свинца (Ф. Содди и др.). Н. Бор дал формулу для уровней энергии атома. Наблюдение слабого ферромагнетизма (Т. Смит). Обнаружено, что ток, циркулирующий в сверхпроводящем кольце, не изменяется по величине в течение нескольких дней без приложения какой-либо внешней э. д. с. С. Барнеттом обнаружено явление возникновения в теле при вращении в отсутствие внешнего магнитного поля намагниченности (эффект Барнетта). Э. Резерфорд выдвинул идею об искусственном превращении атомных ядер. Э. Резерфорд и Э. Андраде экспериментально осуществили дифракцию гамма-лучей на кристалле, доказав их электромагнитную природу. Э. Резерфорд предсказал внутреннюю конверсию.
* 1915...1916 гг. А. Зоммерфельд усовершенствовал теорию атома Бора, распространив ее с просто периодических на случай многократно периодических систем, разработал квантовую теорию эллиптических орбит (теория Бора - Зоммерфельда), ввел радиальное и азимутальное квантовые числа.
* 1915 г. А. Зоммерфельд построил теорию тонкой структуры водородного спектра. А. Эйнштейном и В. де Гаазом обнаружено возникновение вращения при намагничивании (эффект Эйнштейна - де Гааза). Разработан метод меченых атомов (Д. Хевеши, Ф. Панет). Разработана теория химической связи в органических соединениях и предложена гипотеза валентных электронов. Установлен коротковолновой предел непрерывного спектра рентгеновских лучей.
* 1916 г. А. Зоммерфельд и П. Дебай завершили построение квантовой теории эффекта Зеемана. В. Коссель, исходя из теории атома Бора, объяснил химические взаимодействия, в том числе и гетерополярных молекул. Вышла работа А. Эйнштейна "Основы общей теории относительности", которой он завершил создание релятивистской теории гравитации, дав систематическое изложение ее физических основ и математического аппарата. Немецкий ученый К. Шварцшильд получил первое решение уравнения тяготения Эйнштейна, описывающее гравитационное поле сферической массы (решение Шварцшильда). П. Дебай и А. Зоммерфельд показали, что компоненты момента. количества движения в направлении поля также квантуются, и ввели понятие магнитного квантового числа. П. Дебай и П. Шеррер предложили метод исследования структуры поликристаллических материалов при помощи дифракции рентгеновских лучей (метод Дебая - Шеррера). П. Эвальд построил динамическую теорию рассеяния рентгеновских лучей. П. Эренфест выдвинул адиабатический принцип. П.С. Эпштейн я К. Шварцшильд сформулировали общую квантовую теорию многократно периодических систем. Постулирование А. Эйнштейном гравитационных волн. В 1918 г. он вывел формулу для мощности гравитационного излучения. Теоретически прогнозировано индуцированное излучение и введены вероятности спонтанного и вынужденного излучений (А. Эйнштейн).
* 1917 г. А. Эйнштейн на основе своих уравнений поля развил представление о пространстве с постоянной во времени и пространстве кривизной (модель Вселенной Эйнштейна, знаменующая зарождение космологии), ввел космологическую постоянную. В. де Ситтер выдвинул космологическую модель Вселенной (модель де Ситтера). Изготовлены первые фотосопротивления (Т. Кэйз). Открыт 91-й элемент - протактиний (О. Ган, Л. Мейтнер). Получена первая удачная рентгеноспектрограмма (Э. Вагнер). У. Харкинс нашел, что более стабильны ядра с четным значением атомного числа и встречаются чаще, чем с нечетным.
* 1918...1919 гг. Г. Вейль предложил первый вариант единой теории поля, основанный на обобщении римановой геометрии.
* 1918 г. А. Демпстер построил первый масс-спектрометр. Бор сформулировал принцип соответствия (начал разрабатывать еще в 1914...1915 гг.). Выдвинута идея объединенного описания всех полей и всего вообще вещества на базе геометризированной картины мира - единая теория толя (Г. Вейль, Э. Картан, А. Эддингтон, А. Эйнштейн и др.). Доказан факт существования изотопов среди продуктов радиоактивного распада (Дж. Дж. Томсон). Обнаружено явление инерции электронов в металлах (Р. Толмен, Т. Стюарт). Первая правильная интерпретация явления дана в 1936 г. Ч. Дарвином. Открыты изобары (Стюарт). П. Вейсс и Г. Пикар открыли магнетокалорический эффект. Э. Нетер открыла связь свойств симметрии с физическими законами сохранения (теорема Нетер).

<< Пред. стр.

страница 8
(всего 11)

ОГЛАВЛЕНИЕ

След. стр. >>

Copyright © Design by: Sunlight webdesign