LINEBURG


<< Пред. стр.

страница 7
(всего 13)

ОГЛАВЛЕНИЕ

След. стр. >>

Это не означает, что Л. был совершенно бесплодным. Его сто­ронники добились определенных успехов в прояснении основ математики. В частности, было показано, что математический сло­варь сводится к неожиданно краткому перечню основных поня­тий, которые принадлежат, как принято считать, словарю чистой логики. Вся существующая математика была сведена к сравнительно простой и унифицированной системе исходных, принимаемых без доказательства положений, или аксиом, и правил вывода из них следствий, или теорем.
Однако в целом Л. оказался утопической концепцией.
ЛОГИЧЕСКАЯ МАШИНА — механическое, электромеханическое или электронно-вычислительное устройство, предназначенное для полуавтоматического или автоматического решения широкого круга математических и логических задач, для управления техно­логическими и производственными процессами, для оптимальных экономических расчетов, для обработки массивов информации, которые мозг человека не в состоянии охватить, для моделирова­ния форм человеческого мышления.
Попытки создать механические устройства для осуществления арифметических операций уходят в далекую древность. Первую логическую машину построил Раймунд Луллий (1235—1315). Его машина состояла из семи вращающихся вокруг одного центра кругов. На каждом из них были написаны слова, выражающие раз­личные понятия, напр. «человек», «знание», «количество» и т. п., и логические операции, напр. «равенство», «противоречие» и т. п. Вра­щая круги, можно было получать разнообразные сочетания поня­тий. С помощью своей машины Луллий получал из заданных посы­лок силлогистические выводы. В первой половине XVII в. французский математик Б. Паскаль (1623-1662) сконструировал машину для вы­полнения арифметических операций. Идея машинизации процес­сов умозаключения была теоретически развита немецким фило­софом и ученым Г. Лейбницем (1646-1716) в работе «Об искусстве комбинаторики». Первой подлинно Л. м. считается «демонстра­тор» Ч. Стенхопа (1753-1816), с помощью которого проверялись не только традиционные, но и т. наз. «числовые» силлогизмы. «Де­монстратор» решал элементарные задачи традиционной логики.
Научные основы для создания современных Л. м. были заложе­ны благодаря развитию математической логики и кибернетики, а


[178]
техническая возможность их создания была обеспечена прогрес­сом в области электроники и автоматики. В 1944 г. в США была построена автоматическая вычислительная машина «Марк-1», имев­шая электромагнитное реле и перфоленту, на которой записыва­лись числа и указывались операции с ними. В 1945 г. Дж. фон Ней­ман предложил помещать закодированную программу вычислений в запоминающее устройство машины, что значительно расши­рило диапазон ее возможностей. С середины 50-х годов начали со­здаваться информационно-логические машины, способные хранить значительные записи информации, выбирать из них необходимые данные и производить не только математическую обработку ин­формации, но и логические операции. Л. м. последующих поколе­ний способны осуществлять миллиарды операций в секунду, раз­личать простые рисунки, самообучаться, понимать простые фразы на естественном языке и решать самые разнообразные задачи во многих областях науки, техники, управления и т. д.
Принципиальная схема Л. м. включает следующие основные ком­поненты: 1. Входное устройство, преобразующее внешнюю инфор­мацию в последовательность электрических импульсов. 2. Выходное устройство, преобразующее электрические сигналы в последова­тельность воспринимаемых человеком знаков. 3. Запоминающее ус­тройство, хранящее информацию и часто называемое просто «па­мятью» машины. Различают оперативную память, емкость которой сравнительно невелика, но отличается быстродействием, и дол­говременную, внешнюю память, с большим объемом, но мень­шим быстродействием. 4. Арифметическое устройство, осуществ­ляющее математические и логические действия. 5. Блок управления, обеспечивающий автоматическое выполнение программы, введен­ной в машину.
Все более широкое использование Л. м. позволяет человеку решать все более сложные задачи, освобождает его от рутинных мыслительных операций и делает человеческий труд все более творческим.
ЛОГИЧЕСКАЯ ПРАВИЛЬНОСТЬ — соответствие законам и пра­вилам формальной логики. Обычно проводят различие между ис­тинностью и правильностью человеческого мышления. Понятие истины характеризует мышление в его отношении к дей­ствительности: мысль, предложение истинны, если они соответ­ствуют действительности. Понятие правильности характеризует мышление в его отношении к законам и правилам логики: рас­суждение правильно, если в нем соблюдены все необходимые пра­вила логики.


[179]
Различие между истинностью и правильностью отчетливо про­является в тех случаях, когда формально правильное рассуждение приводит к ложному выводу. Напр., рассмотрим умозаключение:
Все металлы — твердые тела. Ртуть не является твердым телом.
Ртуть не является металлом.
Это умозаключение построено в форме простого категориче­ского силлогизма, причем оно отвечает соответствующим прави­лам, т. е. правильно. Однако вывод является ложным. Это обуслов­лено ложностью первой посылки. Если рассуждение построено неправильно, то даже из истинных посылок мы можем получить как истину, так и ложь. Напр.:
Все тигры — полосаты.
Это животное - полосато.
Это животное — тигр.
Выводное суждение может быть как истинным, так и ложным, в зависимости от того, кто перед нами — полосатый тигр или полоса­тая зебра. Для того чтобы выводное знание было безусловно истин­ным, требуется, чтобы наше рассуждение опиралось на истинные посылки и было правильным. Правильность рассуждений можно кон­тролировать, гораздо сложнее устанавливается истинность знания. Уче­ные прошлого часто приходили к ложным выводам не потому, что рассуждали неправильно, а потому, что посылки их были ложными.
ЛОГИЧЕСКАЯ ФОРМА — способ связи содержательных частей рассуждения (доказательства, вывода и т. п.). В соответствии с ос­новным принципом логики, правильность рассуждения зависит только от его формы и не зависит от его конкретного содержания. Само название «формальная логика» подчеркивает, что эта логи­ка интересуется только формой рассуждения. Л. ф. представляется посредством логических констант и переменных. Логические кон­станты, подобные «и», «или», «если, то» и т. д., не имеют само­стоятельного содержания, но с их помощью из одних содержа­тельных выражений могут быть получены новые содержательные выражения. Переменные, входящие в Л. ф., представляют выра­жения, обладающие самостоятельным содержанием: высказыва­ния, имена (см.: Символы собственные и несобственные).
Напр., высказывания «Все лошади едят овес» и «Все реки впа­дают в море» различны по своему содержанию, причем первое истинно, а второе ложно. Отвлекаясь от содержания высказыва-



[180]
ний, можно заменить их части переменными S и Р. Получим, что данные высказывания имеют одну и ту же логическую форму: «Все S есть Р». Содержательно разные высказывания «Если есть огонь, то есть дым» и «Если математика - наука, то она устанавливает зако­ны» также имеют одинаковую логическую форму: «Если А, то В».
Следующие два вывода, различающиеся своим содержанием, совпадают по своей логической форме: «Если сейчас день, то свет­ло. Сейчас день. Следовательно, светло» и «Если 13 - простое чис­ло, оно делится только на себя и на единицу. 13 - простое число. Следовательно, 13 делится только на себя на и на единицу». Заме­нив высказывания, входящие в данные выводы, переменными, получаем, что в обоих случаях рассуждение идет по одной и той же схеме: «Если А, то В. А. Следовательно, В». Это — схема пра­вильного рассуждения: какие бы конкретные высказывания ни подставлялись вместо A и В, если посылки истинны, заключение также будет истинным (см.: Логическая правильность).
Различие между Л. ф. и содержанием не является абсолютным. То, что в одном случае считается относящимся к форме, в другом может оказаться содержательным компонентом рассуждения, и наоборот.
Интерес логики к Л. ф. не означает отвлечение ее от всякого содержания. Сама Л. ф. обладает определенным абстрактным со­держанием, его иногда называют «формальным», чтобы отличить от «конкретного содержания». Скажем, форма «Все S есть Р» ука­зывает, что у всякого предмета, обозначаемого буквой S, есть при­знак, обозначаемый буквой Р.
Понятие Л. ф. является центральным в логике. С ним связаны понятия логического закона, правила вывода, логического следова­ния и др.
ЛОГИЧЕСКИЕ КОНСТАНТЫ, или: Логические постоян­ные, — термины, относящиеся к логической форме рассуждения (доказательства, вывода) и являющиеся средством передачи чело­веческих мыслей и выводов, заключений в любой области. К Л. к. относятся такие слова, как «не», «и», «или», «есть», «каждый», «некоторый» и т. п. Л. к. не имеют самостоятельного содержания. Сами по себе они ничего не описывают и ничего не обозначают. Вместе с тем они позволяют из одних содержательных выражений получать другие. Установление точного смысла Л. к. и выяснение самых общих законов, относящихся к ним, — одна из основных задач логики (см.: Логическая форма, Символы собственные и несоб­ственные, Символика логическая).
ЛОГИЧЕСКИЕ ОПЕРАЦИИ - операции, посредством которых из простых высказываний образуются сложные, из простых тер-


[181]
минов — сложные, из высказываний — термины, из терминов — высказывания и т. д.
К Л. о., позволяющим из одних высказываний получать другие высказывания, относятся конъюнкция («и», символически &), дизъ­юнкция («или», v), импликация («если, то», ->), эквивалентность («если и только если», =), отрицание («неверно, что», ˜) и др. Так, если даны два произвольных высказывания A и В, из них с помощью конъюнкции получается сложное высказывание A & В, которое истинно, только когда A и B истинны; с помощью дизъ­юнкции получается сложное высказывание A v В, истинное, ког­да хотя бы одно из входящих в него высказываний истинно, и т. п. (см.: Логика высказываний).
ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ АВТОМАТИКИ - устройства, реа­лизующие некоторые простые логические функции и функцио­нальные преобразования в машинах, самостоятельно работающих по заданной программе. Наиболее распространенным логическим элементом, применяемым в схемах управления автоматических ус­тройств, является электромеханическое реле, реагирующее на оп­ределенные значения и изменения величин к.-л. параметра. На­пряжение на его катушке является входным сигналом, состояние контактов реле (замкнутость или разомкнутость) — выходным сигналом.
Логические элементы являются одной из важнейших частей электронно-вычислительных машин. Они подразделяются на эле­менты, реализующие логическое отрицание, — схема «НЕ»; эле­менты, реализующие логическую конъюнкцию, — схема «И»; эле­менты, реализующие логическую дизъюнкцию, — схема «ИЛИ», и элементы, реализующие комбинированные логические опе­рации. В сущности смысл работы логических элементов заключа­ется в том, чтобы пропускать или не пропускать сигнал по той или иной цели, усиливать поступивший сигнал или не усили­вать и т. п. Набор логических элементов позволяет электронно-вычислительной машине осуществлять преобразования инфор­мации в соответствии с преобразованиями формул в алгебре логики.
ЛОГИЧЕСКИЙ АНАЛИЗ - применение средств математической логики для обсуждения и решения философских и методологи­ческих проблем. Выражение проблемы в формальном языке при­дает ей точность и определенную ясность, что иногда способно облегчить поиск ее решения. При этом часто оказывается, что формальное выражение проблемы не вполне адекватно ее содер­жательному пониманию. Тогда мы пытаемся улучшить это выра­жение и сделать его более адекватным. Одновременно происхо-



[182]
дит и более глубокое содержательное уяснение анализируемой проблемы. Напр., когда А. Тарский строит точное формальное определение понятия истины, он применяет понятие истины к предложениям. Это дает повод поставить вопрос о том, чему мы приписываем понятие истины — предложениям или суждениям. Обсуждение этого вопроса позволяет более глубоко понять при­роду суждения и предложения.
Основы метода Л. а. были заложены в трудах немецкого мате­матика и логика Г. Фреге и англ. логика и философа Б. Рассела. Однако широкое распространение он получил в трудах предста­вителей логического позитивизма, которые провозгласили, что ос­новной задачей философии является Л. а. языка науки. Несмотря на значительные успехи в решении отдельных проблем, достигну­тые Р. Карнапом, К. Гемпелем, К. Рейхенбахом и др., представители логического позитивизма в общем не смогли использовать все эв­ристические возможности метода Л. а., т. к. в силу своих гносеоло­гических установок ограничивали базис этого метода средствами экстенсиональной логики. В настоящее время метод Л. а. часто ис­пользуется на различных этапах философско-методологического исследования: для более четкой постановки проблем, для выявле­ния скрытых допущений той или иной точки зрения, для уточне­ния и сопоставления конкурирующих концепций, для их более строгого и систематического изложения и т. п. Следует лишь по­мнить об ограниченности этого метода и опасностях, связанных с его применением. Точность выражений, к которым приводит метод Л. а., часто сопровождается обеднением содержания. Простота и ясность формального выражения некоторой проблемы иногда может порождать иллюзию решения там, где еще требуются даль­нейшие исследования и дискуссии. Трудности формального пред­ставления и заботы о его адекватности могут увести нас от обсуж­дений собственно философской или методологической проблемы и заставить заниматься техническими вопросами, лишенными фи­лософского смысла. Между прочим, так и случилось со многими методологическими проблемами логического позитивизма. Если же помнить об этом и рассматривать формальное выражение философско-методологической проблемы не как конечный резуль­тат, а как вспомогательное средство более глубокого философско­го анализа, как некоторый промежуточный этап в ходе философского исследования, то такие формальные выражения иногда могут оказаться полезными (см.: Логика научного познания). ЛОГИЧЕСКИЙ ЗАКОН, или: Закон л о г и к и, - выражение, содержащее только логические константы и переменные и явля-


[183]
ющееся истинным в любой (непустой) предметной области. При­мером Л. з. может служить любой закон логики высказываний (ска­жем, непротиворечия закон, закон исключенного третьего, закон де Моргана, закон косвенного доказательства и т. п.) или логики предикатов.
Л. з. принято называть также (логической) тавтологией. В об­щем случае логическая тавтология — выражение, остающееся ис­тинным, независимо от того, о каких объектах идет речь, или «всегда» истинное выражение. Напр., в выражение «Неверно, что р и не-р», представляющее непротиворечия закон, вместо пере­менной р должны подставляться высказывания. Все результаты таких подстановок («Неверно, что 11 - простое число и вместе с тем не является простым» и т. п.) являются истинными высказы­ваниями. В выражение «Если для всех х верно, что х есть Р, то не существует х, не являющийся Р», представляющее закон логики предикатов, вместо переменной х должно подставляться имя объекта из любой (непустой) предметной области, а вместо пе­ременной Р — некоторое свойство.
Все результаты таких подстановок представляют собой истин­ные высказывания («Если для всех людей верно, что они смерт­ны, то не существует бессмертного человека», «Если каждый ме­талл пластичен, то нет непластичных металлов» и т. п.).
Понятие Л. з. непосредственно связано с понятием логического следования: заключение логически следует из принятых посылок, если оно связано с ними логическим законом. Напр., из посылок «Если р, то q» и «Если q, то r» логически следует заключение «Если р, то r», поскольку выражение «Если (если р, то q, и если q, то r), то (если р, то r)» представляет собой транзитивности закон (скажем, из посылок «Если человек отец, то он родитель» и «Если человек родитель, то он отец или мать» по этому закону логи­чески вытекает следствие «Если человек отец, то он отец или мать»).
Современная логика исследует логические законы только как элементы систем таких законов. Каждая из логических систем содержит бесконечное множество Л. з. и представляет собой аб­страктную знаковую модель, дающую описание какого-то опре­деленного фрагмента, или типа, рассуждений. Напр., бесконеч­ное множество систем, обладающих существенной общностью и объединяемых в рамках модальной логики, распадается на эпис­темическую логику, деонтическую логику, оценок логику, логику вре­мени и др.
В современной логике построены логические системы, не со­держащие закона непротиворечия (паранепротиворечивая логика),



[184]
закона исключенного третьего, закона косвенного доказательства (интуиционистская логика) и т. д.
ЛОГИЧЕСКИЙ КВАДРАТ (квадрат противоположностей) - ди­аграмма, служащая для мнемонического запоминания некото­рых логических соотношений между общеутвердительными (A), общеотрицательными (Е), частноутвердительными (I) и частноотрицательными суждениями (О). Логический квадрат пока­зан на рисунке. Противоречащие, контрадикторные суждения (А и О; Е и I) не могут быть одновременно истинными и ложными: если одно из них истинно, то другое ложно. Так, если суждение «Все металлы являются электропроводными» (A) истинно, то суж­дение «Некоторые металлы не являются электропроводными» ложно. Если суждение «Некоторые металлы не являются твер­дыми» (О) истинно, то суждение «Все металлы являются твер­дыми» (А) ложно.
Противные суждения (A и Е), в отличие от противоречащих, могут оба оказаться ложными, но не могут быть оба истинными. Так, суждения «Все студенты являются шахматистами» (A) и «Ни один студент не является шахматистом» (Е) оба ложны. При ис­тинности же одного из них второе является ложным. Так, если суждение «Все кенгуру являются млекопитающими» (A) истин­но, то суждение «Ни один кенгуру не является млекопитающим» (Е) ложно. Подпротивные суждения (I и О) не могут быть одно­временно ложными. Так, если суждение «Некоторые металлы не являются электропроводными» (О) ложно, то суждение «Неко­торые металлы являются электропроводными» (I) (т. е. «Суще­ствуют металлы, которые электропроводны») является истин­ным. Подпротивные суждения могут оказаться и оба истинными. Таковы суждения «Некоторые металлы являются твердыми» (O)


и «Некоторые металлы не являются твердыми» (О).
Суждения, находящиеся в отно­шении подчинения (A, I и Е, О), от­личаются, напр., тем важным свой­ством, что при истинности общих суждений соответствующие им час­тные также являются истинными. Так, истинность суждения «Все газы являются сжимаемыми» (A) влечет истинность подчиненного ему суж­дения (I) «Некоторые газы являют­ся сжимаемыми».


[185]
ЛОГИЧЕСКИЙ ПОЗИТИВИЗМ - основное направление нео­позитивизма. Возникло в 20-х годах XX в. под влиянием идей австрийского философа Л. Витгенштейна, который в своем глав­ном произведении раннего периода «Логико-философский трак­тат» (1921 г., русский перевод 1958 г.) опирался на логическую систему, построенную Б. Расселом и А. Уайтхедом. В исчислении выс­казываний у нас имеется набор атомарных предложений, обладаю­щих следующими свойствами: 1) каждое атомарное предложение является либо истинным, либо ложным; 2) атомарные предложе­ния независимы друг от друга, т. е. истинность или ложность одного из них никак не влияет на истинность или ложность других атомар­ных предложений. Из атомарных предложений с помощью логи­ческих связок — отрицания, конъюнкции, дизъюнкции, импликации и т. п. — можно строить более сложные, молекулярные предложе­ния, которые, в свою очередь, с помощью тех же связок можно объединять в еще более сложные предложения и т. д. Так возникает иерархия все более сложных молекулярных предложений.
В «Логико-философском трактате» Витгенштейн онтологизирует эту логическую структуру: он представляет мир как совокуп­ность атомарных и молекулярных фактов, построенную точно так­же, как строится язык исчисления высказываний. Атомарные фак­ты никак не связаны друг с другом, поэтому в мире нет никаких закономерных связей. Если действительность представляет собой лишь комбинации фактов, то наука должна быть комбинацией предложений, отображающих факты и их различные сочетания. Все, что претендует на выход за пределы этого «одномерного» мира фактов, все, что апеллирует к связи фактов или к глубинным сущ­ностям, должно быть изгнано из науки как ненаучная, бессмыс­ленная болтовня. Средством очищения науки от бессмысленных предложений является логический анализ языка науки.
Представители Л. п. развили эти идеи Витгенштейна в гносео­логическом направлении. Их теория познания опиралась на следу­ющие принципы.
1. Всякое знание есть знание о том, что дано человеку в чув­ственном восприятии.
2. То, что дано нам в чувственном восприятии, мы можем знать с абсолютной достоверностью.
3. Все функции знания сводятся к описанию.
Из этих основных принципов теории познания Л. п. вытекают некоторые другие его особенности. Сюда относится прежде всего отрицание традиционной философии, или «метафизики». Филосо­фия всегда стремилась сказать что-то о том, что лежит за ощуще-



[186]
ниями, стремилась вырваться из узкого круга субъективных пере­живаний.
Логический позитивист либо отрицает существование мира вне чувственных переживаний, либо считает, что о нем ничего нельзя сказать. В обоих случаях философия оказывается ненужной. Един­ственное, в чем она может быть хоть сколько-нибудь полезна, — это анализ научных высказываний. Поэтому философия отожде­ствляется с логическим анализом языка. С отрицанием филосо­фии тесно связана терпимость Л. п. к религии. Если все разговоры о том, что представляет собой мир, объявлены бессмысленными, а вы тем не менее хотите говорить об этом, то безразлично, счита­ете ли вы мир идеальным или материальным, видите в нем воп­лощение Бога или населяете его демонами, — все это в равной степени не имеет к науке никакого отношения, а является сугубо личным делом каждого.
В основе науки, по мнению логических позитивистов, лежат про­токольные предложения, выражающие чувственные пережива­ния субъекта. Истинность этих предложений абсолютно досто­верна и несомненна. Совокупность истинных протокольных пред­ложений образует твердый эмпирический базис науки. Для ме­тодологии Л. п. характерно резкое разграничение эмпириче­ского и теоретического уровней знания. Однако первона­чально логические позитивисты полагали, что все предложения науки — подобно протокольным предложениям— говорят о чув­ственно данном. Поэтому каждое научное предложение можно свести к протокольным предложениям, подобно тому как любое молекулярное предложение экстенсиональной логики может быть разложено на составляющие его атомарные предложения. Досто­верность протокольных предложений передается всем научным предложениям, поэтому наука состоит только из достоверно ис­тинных предложений.
С точки зрения Л. п., деятельность ученого в основном должна сводиться к двум процедурам: 1) установление протокольных пред­ложений; 2) изобретение способов объединения и обобщения этих предложений. Научная теория мыслилась в виде пирамиды, в вер­шине которой находятся основные понятия, определения и акси­омы; ниже располагаются предложения, выводимые из аксиом; вся пирамида опирается на совокупность протокольных предложений, обобщением которых она является. Прогресс науки выражается в построении таких пирамид и в последующем слиянии небольших пирамидок, построенных в некоторой конкретной области науки, в более крупные пирамиды, которые, в свою очередь, сливаются в


[187]
еще более крупные и т. д. до тех пор, пока все научные теории и области не сольются в одну громадную систему — единую унифи­цированную науку. В этой примитивно-кумулятивной модели раз­вития не происходит никаких потерь или отступлений: каждое установленное протокольное предложение навечно ложится в фундамент науки; если некоторое предложение обосновано с по­мощью протокольных предложений, то оно прочно занимает свое место в пирамиде научного знания.
Методологическая концепция Л. п. столкнулась с необходимо­стью решать многочисленные проблемы, вставшие перед ней в связи с той моделью науки, которую она сконструировала. Попытки ре­шить первоначальные проблемы породили новые проблемы, а ре­шение последующих проблем натолкнулось на новые трудности, и в конце концов методология Л. п. развалилась под грузом тех про­блем и трудностей, которые она же и породила. Для сопоставления ее с реальной историей научного познания дело так и не дошло.
Вместе с тем последующее развитие философии науки суще­ственно опиралось на те — как положительные, так и отрицатель­ные — результаты, которые были получены Л. п. в его анализе структуры научного знания, языка науки, различных видов выс­казываний, входящих в научные теории, логических взаимоотно­шений между ними и т. д.
ЛОГИЧЕСКИЙ СИНТАКСИС - раздел семиотики, исследующий формальные свойства знаковых систем. Семиотику принято раз­делять на три части: синтаксис, семантику и прагматику. Син­таксис исследует формальные отношения между знаками. Се­мантика занимается изучением отношений языка и его выра­жений к обозначенным объектам и выражаемому ими значению. Прагматика обращает внимание на употребление языковых выражений, на отношения языка к его носителям. Л. с. отличается тем, что исследует синтаксические свойства не естественных, а формальных, логических языков, поэтому его относят обычно не к семиотике, а к металогике.
С точки зрения синтаксиса, формальная система представляет собой набор исходных символов, из которых по определенным правилам могут быть построены разнообразные формулы, из кото­рых выделяется класс правильно построенных формул. Правила построения формул называются правилами образования. К ним добавляются правила преобразования: аксиомы и правила получения одних формул из других. Правила образования и преобразования формул относятся к числу синтаксических пра­вил. Синтаксические свойства формальных систем выражаются в


[188]
таких понятиях, как «доказательство», «непротиворечивость систе­мы аксиом», «полнота», «независимость аксиом» и т. п. В качестве языка, на котором описываются синтаксические свойства формаль­ных систем, используется фрагмент обычного естественного языка. Однако он, в свою очередь, также может быть формализован.
ЛОГИЧЕСКОГО АНАЛИЗА ФИЛОСОФИЯ - течение в современ­ной западной философии, сводящее философию к логическому ана­лизу языка средствами символической логики. Предмет Л. а. ф. — язык науки и формальные языки логики и математики. Возникно­вение Л. а. ф. связано с интенсивным процессом математизации на­уки и развитием методов формализации. По сути дела ее нельзя рассматривать как определенное философское направление или философскую систему. Метод логического анализа использовал­ся самыми разными философами — Б. Расселом, Л. Витгенштей­ном, Р. Карнапом, К. Поппером, А. Папом, У. Куайном и т. д. Ос­новная идея Л. а. ф. заключается в том, что любую осмысленную философскую или методологическую проблему можно решить сред­ствами символической логики. Для этого рассматриваемую пробле­му нужно формализовать, т. е. описать на формальном логическом языке, а затем, используя логические методы, найти точный ответ. Однако многочисленные попытки решать философские проблемы таким путем показали, что, во-первых, далеко не все философские проблемы могут быть формализованы, а во-вторых, при формали­зации содержание проблемы настолько обедняется, что их реше­ние формальными средствами оказывается философски неинтерес­ным. В настоящее время даже сторонники метода логического ана­лиза признают, что он может быть лишь вспомогательным сред­ством при обсуждении философских проблем, но отнюдь не сред­ством их решения (см.: Логический анализ, Логический позитивизм).
ЛОГИЧЕСКОЕ ПРОТИВОРЕЧИЕ, см.: Противоречие.
ЛОГИЧЕСКОЕ СЛЕДОВАНИЕ - отношение, существующее меж­ду посылками и обоснованно выводимыми из них заключениями. Л.с. относится к числу фундаментальных, исходных понятий логи­ки, точного универсального определения не имеет; в частности, описание его с помощью слов «выводимо», «вытекает» и т. п. со­держит неявный круг, поскольку последние являются синонима­ми слова «следует». Понятие Л. с. обычно характеризуется через связи с другими логическими понятиями, и прежде всего через понятия логического закона и модели.
Из высказывания А логически следует высказывание В, когда импликация «Если A, то В» является частным случаем закона логи­ки. Напр., из высказывания «Если натрий — металл, он пластичен»


[189]
логически вытекает высказывание «Если натрий непластичен, он не металл», поскольку импликация, основанием которой являет­ся первое высказывание, а следствием — второе, представляет со­бой частный случай логического контрапозиции закона.
Иное, семантическое определение логического следова­ния: из посылок A1, ..., Аn логически следует высказывание В, если не может быть так, что высказывания A1, ..., Аn истинны, а высказывание В ложно (т. е. если В истинно в любой модели, в которой истинны A1, ..., Аn).
Отличительной чертой Л. с. является, таким образом, то, что оно ведет от истинных высказываний только к истинным. Если выво­ды, относимые к обоснованным, дают возможность переходить от истины к лжи, то установление между высказываниями отноше­ния Л.с. теряет всякий смысл, и логический вывод превращается из формы разворачивания и конкретизации знания в средство, стирающее грань между истиной и заблуждением.
В современной логике проблема адекватного описания Л. с. воз­никла в связи с тем, что логика классическая дает слишком широ­кое его описание, в ряде моментов не согласующееся с интуитив­ным представлением о следовании одних высказываний из других. В частности, согласно этой логике, из противоречия логически сле­дует любое высказывание, логически истинное высказывание сле­дует из любого и т. п. (см.: Импликация материальная, Парадоксы импликации).
Усовершенствованные описания Л. с. не содержат правил, по­зволяющих перейти от истинных посылок к ложному заключению. Они удовлетворяют, кроме того, ряду дополнительных условий. Выдвижение этих условий объясняется стремлением дать такое описание Л. с., при котором существование между высказывания­ми этого отношения зависело бы не только от истинностного зна­чения высказываний (как в классической логике), но и от их смыс­ловой связи. Поскольку «связь по смыслу» понимается по-разному, существуют различные неклассические теории Л. с. С их помощью решается задача исключения нежелательных, или парадоксаль­ных, правил следования и показано, что нет привилегирован­ной логической системы, являющейся единственно правильным описанием Л. с. Дальнейшая задача формально-логического ана­лиза данного отношения состоит в разработке единой логичес­кой теории, взаимосвязанными фрагментами которой оказались бы уже построенные и иные возможные теории Л. с.
ЛОГИЧЕСКОЕ УДАРЕНИЕ — ударение, характеризующее смыс­ловую нагрузку компонентов суждения. В некоторых учениях о суж-



[190]
дении в традиционной логике, принадлежавших психологическому направлению, основная смысловая нагрузка в простых атрибу­тивных суждениях относилась к предикату суждения: именно в предикате суждения фиксировалась новая информация о предме­те. Суждение при этом истолковывалось как некоторый ответ на запрос мысли, выраженный в соответствующем вопросительном предложении (см.: Вопрос). Так, в суждении «Андреев пишет пись­мо» в зависимости от контекста, т. е. в зависимости от того, на какой вопрос оно отвечает, различные компоненты суждения бу­дут выполнять роль предиката. Если суждение является ответом на вопрос: «Что делает Андреев?», то предикатом будет «пишет пись­мо». Если же нам известно, что некий человек пишет письмо, и нас интересует, кто пишет письмо, то предикатом будет «Андре­ев» («Пишущий письмо есть Андреев»).
ЛОГОС (греч. logos) — термин древнегреческой философии, оз­начающий одновременно «слово» (или «предложение», «выска­зывание», «речь») и «смысл» (или «понятие», «суждение», «осно­вание»). Этот термин был введен в философию Гераклитом (ок. 544 — ок. 483 до н. э.), который называл Л. вечную и всеобщую необходимость, устойчивую закономерность. В последующем раз­витии человеческой мысли значение этого термина неоднократно изменялось, однако до сих пор, когда говорят о Л., имеют в виду наиболее глубинную, устойчивую и существенную структуру бы­тия, наиболее существенные закономерности развития мира.
ЛОЖЬ, см. Истинностное значение.
[191]


М
МАТЕМАТИЧЕСКАЯ ЛОГИКА
— одно из названий современной формальной логики, пришедшей во второй половине XIX — на­чале XX в. на смену традиционной логике. В качестве другого назва­ния современного этапа в развитии науки логики используется также термин логика символическая. Определение «математичес­кая» подчеркивает сходство новой логики с математикой, осно­вывающееся прежде всего на применении особого символическо­го языка, аксиоматического метода, формализации.
М. л. исследует предмет формальной логики методом построе­ния специальных формализованных языков, или исчислений. Они позволяют избежать двусмысленной и логической неясности ес­тественного языка, которым пользовалась при описании правиль­ного мышления традиционная логика. Новые методы дали логике такие преимущества, как большая точность формулировок, воз­можность изучения более сложных с точки зрения логической формы объектов. Многие проблемы, исследуемые в М. л., вообще невозможно было сформулировать с использованием только тра­диционных методов.
Иногда термин «М. л.» употребляется в более широком смыс­ле, охватывая исследование свойств дедуктивных теорий, имену­емое металогикой или метаматематикой.
МАТЕРИАЛЬНАЯ СУППОЗИЦИЯ, см.: Суппозиция.
МЕТАМАТЕМАТИКА
— раздел математической логики, изучаю­щий основания математики, структуру математических доказательств и математических теорий с помощью формальных методов.
М. рассматривает формализованную теорию как множество не­которых конечных последовательностей символов, называемых фор-



[192]
мулами и термами, к которым добавляется множество операций, производимых над этими последовательностями. Формулы и тер­мы, получаемые с помощью простых правил, служат заменой пред­ложениям и функциям содержательной математической теории. Операции над формулами соответствуют элементарным шагам де­дукции в математических рассуждениях. Формулы, соответствую­щие аксиомам содержательной теории, выступают в качестве ак­сиом формализованной теории. Формулы, которые могут быть выведены из аксиом посредством принятых операций, соответ­ствуют теоремам содержательной теории.
Множество формул и множество термов, рассматриваемые как множества конечных последовательностей с операциями, в свою очередь, могут быть объектами математического исследования. В ранний период развития математической логики использовались в основном простые методы, исключались все нефинитные. Лиде­ром этого направления был Д. Гильберт, полагавший, что с по­мощью простых методов М. удастся доказать непротиворе­чивость фундаментальных математических теорий. Однако тео­ремы К. Гёделя показали, что программа Гильберта неосуществи­ма. Использование финитных методов для исследования форма­лизованных теорий является естественным в силу их очевидного финитного характера. Но на практике ограничение методов дока­зательства элементарными методами значительно усложняет ма­тематические исследования. Поэтому для более глубокого проник­новения в сущность формализованных теорий современная М. широко использует более сложные, нефинитные методы.
Множество термов любой формализованной теории является ал­геброй, и множество всех формул также является алгеброй. После естественного отождествления эквивалентных формул множество всех формул становится решеткой (структурой), а именно: булевой ал­геброй, псевдобулевой алгеброй, топологической булевой алгеброй и т. п. - в зависимости от типа логики, принимаемой в теории. Эти алгебры, в свою очередь, связаны с понятием поля множеств и то­пологического пространства. С этой точки зрения представляется ес­тественным применение в М. методов алгебры, теории решеток (струк­тур), теории множеств и топологии. В М. широко используется также гёделевский метод арифметизации и теория рекурсивных функций.
М. исследует вопросы непротиворечивости и полноты форма­лизованных теорий; независимость аксиом; проблему разреши­мости; вопросы определимости и погружения одних теорий в дру­гие; дает точное определение понятия доказательства для различ­ных формализованных теорий и доказывает теоремы о дедукции;


[193]
изучает проблемы интерпретации формальных систем и их раз­личные модели; устанавливает разнообразные отношения между формализованными теориями и т. п.
МЕТАТЕОРИЯ (от греч. meta - после, за, позади)
- теория, изу­чающая язык, структуру и свойства некоторой другой теории. Тео­рия, свойства которой исследуются в М., называется предмет­ной, или объектной, теорией. Наиболее развиты М. логики и математики (в металогике и метаматематике). Объектом исследова­ния М. обычно оказывается не содержание объектной теории, а ее формальные свойства, поэтому она предварительно формализуется и представляется в виде формального исчисления. В М. можно вы­делить две части: синтаксис, изучающий структурные и де­дуктивные свойства исследуемой теории; семантику, рассматри­вающую вопросы, связанные с интерпретацией изучаемой теории.
МЕТАФОРА (от греч, metaphora - перенос, образ)
- перенесе­ние свойств одного предмета (явления или аспекта бытия) на другой по принципу их сходства в к.-л. отношении или по контра­сту, напр.: «говор волн», «нос самолета», «свинцовые тучи» и т. п. В отличие от сравнения, где присутствуют оба члена сопоставле­ния, М. — это скрытое сравнение, в котором слова «как», «как будто», «словно» и т. п. опущены, но подразумеваются. В М. различ­ные признаки — то, чему уподобляется предмет, и свойства самого предмета — представлены не в их качественной раздельности, как в сравнении, а сразу даны в новом нерасчлененном единстве. Обладая неограниченными возможностями в сближении или неожиданном уподоблении самых разных предметов и явлений, по существу по-новому осмысливая предмет, М. позволяет вскрыть, обнажить, про­яснить его внутреннюю природу.
В науке М. - необходимое средство научного творчества. Практи­чески всякое новое научное понятие появляется как некая М., ста­новясь точным понятием лишь с течением времени. Напр., «свето­вая волна» — это М., уподобляющая свет колебаниям волн на по­верхности воды; «электрический ток» - тоже М., приравнивающая электричество к потоку воды, и т. п. Часто новое явление обознача­ется старым термином, относящимся к известным явлениям, и в течение некоторого времени этот термин выступает в качестве М., в которой отображаются свойства различных явлений.
МЕТАЯЗЫК (от греч. meta - после, за, позади)
- язык, сред­ствами которого исследуются и описываются свойства другого язы­ка, называемого предметным, или объектным. Напр., когда мы на­чинаем изучать иностранный язык, знакомиться с его выражения­ми, с его грамматической структурой, системой времен, падежей



[194]
и т. п., мы пользуемся для описания свойств этого пока еще не известного нам языка своим родным языком, который и выступа­ет в данном случае в качестве М.
Смешение объектного языка и М. приводит к противоречиям и парадоксам (см.: «Лжеца» парадокс). В естественном языке явного различия между объектным и М. нет: мы пользуемся одним и тем же языком и для того, чтобы говорить о внеязыковых объектах, и для того, чтобы говорить о самом языке. Только интуиция помогает нам избежать путаницы и противоречий. Однако всегда существует опасность того, что неразличение объектного и М. приведет к про­тиворечию. Поэтому в науке, в частности в металогике и метама­тематике, проводится четкое разделение этих двух языков. К М. обычно предъявляются следующие требования: 1) в нем должны быть средства для описания синтаксических свойств объектного язы­ка, в частности средства для построения выражений объектного языка; 2) М. должен быть настолько богат по своим выразительным возможностям, чтобы для каждого выражения объектного языка в нем существовала формула, являющаяся переводом этого выраже­ния; 3) логический словарь М. должен быть по крайней мере столь же богат, как и логический словарь объектного языка; 4) в М. должны быть дополнительные переменные, принадлежащие к более высокому типу, чем переменные объектного языка, и т. д.
МЕТОД (от греч. methodos — путь, способ исследования, обуче­ния, изложения)
— совокупность приемов и операций познания и практического преобразования действительности; способ достиже­ния определенных результатов в познании и практике. Применение того или иного М. детерминируется целью познавательной или прак­тической деятельности, предметом изучения или действия и усло­виями, в которых осуществляется деятельность.
Существует множество классификаций М. познания. В частности, выделяют частные специальные М. отдельных конкретных наук, напр. М. механики, оптики, термодинамики, химического анализа, критический анализ источников как М. исторической науки, срав­нительный М. в языкознании и т. п. Наряду с М. конкретных наук существуют также общенаучные М.,т. е. М., используемые об­ширным классом наук или даже всеми науками. К числу таких М. обычно относят наблюдение, измерение, эксперимент, индуктив­ный М., М. гипотез, М. формальной логики и т. п. И наконец, наиболее общими М., применимыми как в познании, так и в прак­тике, являются философские М., напр. метафизический и диалек­тический М., М. восхождения от абстрактного к конкретному, ана­лиз и синтез, идеализация и абстракция, сравнение и т. п. Наряду с


[195]
указанной классификацией широким распространением пользуется также разделение М. науки на эмпирические и теорети­ческие М. познания.
Всякий М. опирается на определенное знание об объектах позна­ния или практического действия. Поэтому иногда М. называют на­учные принципы и теории; напр., вариационные принципы меха­ники — принцип возможных перемещений, принцип наименьшего действия, принцип Д'Аламбера и т. п. — выступают в качестве М. изучения равновесия и движения несвободной механической систе­мы. Материалистическую диалектику часто также называют всеоб­щим М. познания и действия. Возможно, в этом случае лучше гово­рить о методологической функции законов и теорий науки, прин­ципов философии. Учение о М. называется методологией.
МЕТОДОЛОГИЧЕСКАЯ АРГУМЕНТАЦИЯ
- обоснование отдель­ного утверждения или целостной концепции путем ссылки на тот несомненно надежный метод, с помощью которого получено обо­сновываемое утверждение или отстаиваемая концепция. М.а. являет­ся частным случаем аргументации теоретической.
Представления о сфере М.а. менялись от одной эпохи к другой. Существенное значение придавалось ей в Новое время, когда счи­талось, что именно методологическая гарантия, а не соответствие фактам как таковое сообщает суждению его обоснованность. Совре­менная методология науки скептически относится к мнению, что строгое следование методу способно само по себе обеспечить истину и служить ее надежным обоснованием. Возможности М.а. очень раз­личны в разных областях знания. Ссылки на метод, с помощью кото­рого получено конкретное заключение, довольно обычны в есте­ственных науках, крайне редки в гуманитарных науках и почти не встречаются в практическом и тем более художественном мышлении.
Методологизм, сутью которого является преувеличение значе­ния М.а. и даже отдание ей приоритета перед другими способами теоретической аргументации, таит в себе опасность релятивизации научного и иного знания. Если содержание знания определяется не независимой от него реальностью, а тем, что мы должны или хо­тим увидеть в ней, а истинность определяется соблюдением методо­логических канонов, то из-под знания ускользает почва объектив­ности. Никакие суррогаты, подобные интерсубъективности, обще­принятости метода, его успешности и т. п., не способны заменить истину и обеспечить достаточно прочный фундамент для принятия знания. Методологизм сводит научное мышление к системе устояв­шихся, по преимуществу технических способов нахождения нового знания. Результатом является то, что научное мышление произволь-



[196]
но сводится к изобретаемой им совокупности технических при­емов. Согласно принципу эмпиризма, только наблюдения или эксперименты играют в науке решающую роль в процессе приня­тия или отбрасывания научных высказываний. В соответствии с этим принципом М. а. может иметь только второстепенное значение и никогда не способна поставить точку в споре о судьбе конкретного научного утверждения или теории. Общий методологический прин­цип эмпиризма гласит, что различные правила научного метода не должны допускать «диктаторской стратегии». Они должны исклю­чать возможность того, что мы всегда будем выигрывать игру, ра­зыгрываемую в соответствии с этими правилами: природа должна быть способна хотя бы иногда наносить нам поражение.
Методологические правила расплывчаты и неустойчивы, они всегда имеют исключения. В частности, индукция, играющая осо­бую роль в научном рассуждении, вообще не имеет ясных правил. Научный метод несомненно существует, но он не представляет собой исчерпывающего перечня правил и образцов, обязательных для каждого исследователя. Даже самые очевидные из этих правил могут истолковываться по-разному. «Правила научного метода» меняются от одной области познания к другой, посколь­ку существенным содержанием этих «правил» является неко­дифицируемое мастерство, т. е. умение проводить конк­ретное исследование и делать обобщения.
Научный метод не содержит правил, не имеющих или в принци­пе не допускающих исключений. Все его правила условны и могут нарушаться даже при выполнении их условия. Любое правило мо­жет оказаться полезным при проведении научного исследования, так же как любой прием аргументации может оказать воздействие на убеждения научного сообщества. Но из этого не следует, что все реально используемые в науке методы исследования и приемы ар­гументации равноценны и безразлично, в какой последовательнос­ти они используются. В этом отношении «методологический кодекс» вполне аналогичен моральному кодексу.
М. а. является, таким образом, вполне правомерной, а в науке, когда ядро методологических требований устойчиво, необходимой. Однако методологические аргументы не имеют решающей силы даже в науке. Прежде всего, методология гуманитарного познания не на­столько ясна, чтобы на нее можно было ссылаться. Иногда даже утверждается, что в науках о духе используется совершенно иная методология, чем в науках о природе. О методологии практического и художественного мышления вообще трудно сказать что-нибудь конкретное. Далее, методологические представления ученых явля-


[197]
ются в каждый конкретный промежуток времени итогом и выво­дом предшествующей истории научного познания. Методология науки, формулируя свои требования, опирается на историю на­уки. Настаивать на безусловном выполнении этих требований зна­чило бы возводить определенное историческое состояние науки в вечный и абсолютный стандарт. Каждое новое исследование явля­ется не только, применением уже известных методологических правил, но и их проверкой. Исследователь может подчиниться ста­рому методологическому правилу, но может и счесть его непри­емлемым в каком-то конкретном новом случае. История науки включает как случаи, когда апробированные правила приводили к успеху, так и случаи, когда успех был результатом отказа от какого-то установившегося методологического стандарта. Ученые не только подчиняются методологическим требованиям, но и кри­тикуют их и создают как новые теории, так и новые методологии.
МЕТОДОЛОГИЯ НАУКИ
- часть науковедения, исследующая структуру научного знания, средства и методы научного познания, способы обоснования и развития знания. Систематическое решение методологических проблем дается в методологической концепции, которая создается на базе определенных гносеологических принци­пов. Выработка общего понимания природы человеческого позна­ния, законов и стимулов его развития принадлежит философии, и это философское понимание знания оказывает решающее влияние на формирование представлений о научном знании.
На методологическую концепцию оказывают влияние не только философские принципы. Поскольку методологическая концепция является теорией строения и развития научного знания, постольку она — в той или иной степени — ориентируется также на науку и ее историю. Конечно, современная наука слишком обширна для того, чтобы все ее области можно было в равной мере принять во внима­ние. Поэтому каждая методологическая концепция основное внима­ние уделяет отдельным научным дисциплинам или даже отдельным теориям, которые с точки зрения этой концепции являются наибо­лее важными или образцовыми. Таким образом, несмотря на то, что у всех методологических концепций предмет один — наука и ее история, они могут различаться между собой не только потому, что вдохновляются разными философскими представлениями, но и тем, что ориентируются на разные области науки.
Следует указать еще на один фактор влияющий на методологи­ческую концепцию, — предшествующие и сосуществующие с ней концепции. Каждая новая концепция возникает и развивается в сре­де, созданной ее предшественницами. Взаимная критика конкури-



[198]
рующих концепций, проблемы, поставленные ими, решения этих проблем, способы аргументации, господствующие в данный мо­мент интересы — все это оказывает неизбежное давление на но­вую методологическую концепцию. Она должна выработать соб­ственное отношение ко всему предшествующему материалу: при­нять или отвергнуть существующие решения проблем, признать обсуждаемые проблемы осмысленными или отбросить некоторые из них как псевдопроблемы, развить критику существующих кон­цепций и т. д. Учитывая, что методологическая концепция нахо­дится под влиянием, с одной стороны, философии, а с другой стороны — всегда ориентирована на те или иные области научно­го познания, легко понять, почему в этой области существует громадное разнообразие различных методологических концепций.
Самостоятельной областью исследований М. н. становится в се­редине XIX в. Расширение круга методологических проблем свя­зано с исследованиями Больцано, Маха, Пуанкаре, Дюэма. С конца 20-х годов XX в. наибольшее влияние в М.н. приобрела концепция логического позитивизма (Шлик, Карнап, Фейгль и др.), которая исходила в понимании природы научного знания из субъективно-идеалистических воззрений Маха и логического атомизма Рассела и Витгенштейна. Логический позитивизм рассматривал науку как систему утверждений, в основе которой лежат особые «протоколь­ные» предложения, описывающие чувственные переживания и вос­приятия субъекта. Основную задачу М.н. логические позитивисты усматривали в логическом анализе языка науки с целью устране­ния из него псевдоутверждений, к которым они относили прежде всего утверждения философского характера. Концепция логическо­го позитивизма оказалась в резком противоречии с развитием на­уки и была подвергнута серьезной критике, в частности и со сторо­ны философов-марксистов.
С конца 50-х годов в центре внимания М. н. оказываются пробле­мы анализа развития науки. Появляются концепции, претендую­щие на описание развития научного знания в целом или в отдель­ные периоды. Значительное влияние приобретают методологические концепции Поппера, теория научных революций Куна, историчес­кая модель развития научного знания Тулмина, концепция научно-исследовательских программ Лакатоса и т. п. Для этих концепций характерны тесная связь с историей науки и критическое отноше­ние к неопозитивистской модели науки.
В современной М. н. на первый план выдвигаются следующие проблемы: анализ структуры научных теорий и их функций; поня­тие научного закона; процедуры проверки, подтверждения и опро-


[199]
вержения научных теорий, законов и гипотез; методы научного исследования; реконструкция развития научного знания. Несмот­ря на то что методологические исследования осуществляются на основе самых разнообразных философских школ и направлений, их результаты часто не зависят от философской ориентации ис­следователя и представляют общезначимую ценность.
МНОГОЗНАЧНАЯ ЛОГИКА
- совокупность логических систем, опирающихся на принцип многозначности. В классической двузначной логике выражения при интерпретации принимают только два значе­ния — «истинно» и «ложно», в М. л. рассматриваются и другие зна­чения, напр. «неопределенно», «возможно», «бессмысленно» и т. п. В зависимости от множества истинностных значений различают конечнозначные и бесконечнозначные логики. М. л.явля­ется одним из интенсивно развивающихся разделов логики неклас­сической.
Проблема содержательно ясной интерпретации многозначных систем — наиболее сложная и спорная в М. л. Об этом выразительно говорит, в частности, обилие интерпретаций, предложенных для самой старой из этих систем — трехзначной логики Я. Лукасевича. В соответствии с одной из ее интерпретаций, высказывания должны делиться не просто на истинные и ложные, а на истин­ные, ложные и парадоксальные. Значение «парадоксально» припи­сывается высказываниям типа «Данное утверждение является лож­ным», т. е. тем высказываниям, из допущения истинности которых вытекает их ложность, а их допущения ложности — истинность.
Промежуточное значение истолковывалось и как «бессмыслен­но». К бессмысленным относятся высказывания типа «Наполеон — наибольшее натуральное число» и т. п. Это значение истолковы­валось и как «неизвестно» или «неопределенно». Неопределенное высказывание — это высказывание, относительно которого в силу к.-л. (возможно, меняющихся от случая к случаю) оснований нельзя сказать, что оно истинно или ложно. К неопределенным могут от­носиться, в частности, высказывания, истинностное значение ко­торых является разным в разные моменты времени («Идет дождь»), высказывания с различного рода переменными и т. д.
Эти примеры показывают, что одна и та же многозначная си­стема может иметь разные интерпретации, причем «неестествен­ность» некоторых из них вовсе не означает, что столь же «неесте­ственной» будет и каждая иная интерпретация.
М. л. не отрицает двузначную логику. Напротив, первая позволя­ет более ясно понять основные идеи, лежащие в основе второй, и является в определенном смысле ее обобщением. В большинстве М. л.



[200]
отсутствуют отдельные законы двузначной логики. В принципе мож­но построить М. л., в которой не имеет места любой наперед за­данный закон двузначной логики. С другой стороны, М. л. таковы, что их законами являются утверждения, не имеющие аналогов в классической логике.
Эти факты не препятствуют, однако, рассмотрению М. л. как своеобразного обобщения двузначной логики. Некоторые утвержде­ния, являющиеся логическими законами при допущении двух зна­чений истинности, перестают быть законами при введении некото­рых дополнительных значений. Но в этом случае законами М. л. не оказываются и отрицания соответствующих двузначных законов. Напр., в интуиционистской логике не имеют места не только зако­ны исключенного третьего и приведения к абсурду, но и отрицания этих законов.
Ни двузначность, ни многозначность не являются прирожден­ными свойствами человеческого мышления. Решение одних проблем может быть получено в рамках двузначной логики, рассуждение о других может оказаться более успешным, если опирается на тот или иной вариант М. л. Вопрос же о том, какой является формальная логика как особая наука, с точки зрения числа допускаемых значе­ний истинности не имеет смысла. Логика никогда не исчерпывалась и тем более не исчерпывается сейчас одной-единственной логичес­кой системой. Вопрос о числе допускаемых значений истинности может возникнуть только при построении отдельных логических систем и при решении отдельных логических проблем. Логика же как совокупность всего огромного числа существующих конкрет­ных логических систем не является, очевидно, ни двузначной, ни многозначной.
М. л. существует около полувека. Многие ее проблемы пока не решены или недостаточно исследованы. Тем не менее уже к настоя­щему времени М. л. нашла большое число приложений, интерес­ных в теоретическом или практическом отношении. Прежде всего открытие М. л. заставило по-новому взглянуть на саму науку логи­ку, ее предмет и используемые ею методы. Оно с особой вырази­тельностью подчеркнуло тот факт, что классическая двузначная логика не является единственно мыслимой и возможной и что современная логика слагается из множества внутренне разнород­ных логических систем.
Многозначные системы более богаты, чем двузначная логика: в первых имеются функции, невыразимые во второй. Так, если в двузначной логике имеются только четыре разные функции от од­ного аргумента, то в трехзначной логике их уже соответственно


[201]
двадцать семь. Это послужило основой попыток определить в рам­ках М. л. такие понятия, которые, будучи взяты сами по себе, не кажутся достаточно ясными и которые неопределимы в двузнач­ной логике. Речь идет прежде всего о модальных понятиях «необ­ходимо», «возможно», «случайно» и т. п.
Многозначные системы использовались при построении логики квантовой механики, описывающей логическую структуру языка этой физической теории.
В информационно-поисковых системах, являющихся системами записи, хранения и обработки данных, используется обычно есте­ственный язык. Выявление логической структуры инормационного поиска и построение общей теории его имитации логическими сред­ствами требует языка формализованного. Было высказано предпо­ложение, что для информационного поиска, в процессе которого нередко встречается ситуация неопределенности, целесообразно ис­пользовать М. л.
МНОГОЗНАЧНОСТИ ПРИНЦИП, см.: Принцип многозначности.
МНОГОЗНАЧНОСТЬ
— характеристика выражения, имеющего в разных контекстах разное значение. Напр., слово «закон» может оз­начать как регулярность, имеющую место в природе или обществе, так и утверждение о такой регулярности, сформулированное в языке науки. С М. связана одна из основных трудностей понимания гово­рящими друг друга. Подавляющее большинство слов обычного язы­ка многозначно. Так, словарь современного русского литературного языка указывает семнадцать разных значений глагола «стоять»; сло­во «жизнь» имеет более тридцати значений и т. д. Между одними значениями трудно найти ч.-л. общее, между другими трудно про­вести различие.
М. как естественная и неотъемлемая черта естественного языка сама по себе не является недостатком. Но она таит в себе потенци­альную возможность логической ошибки. В процессе общения всегда предполагается, что в конкретном рассуждении смысл входящих в него слов не меняется. Если речь идет, допустим, о новом как не­знакомом, пока не будет оставлена данная тема, слово «новый» должно обозначать «незнакомый», а не «следующий» или «совре­менный». Логическая ошибка, связанная с подменой значения сло­ва, называется эквивокацией. Допускается она, напр., в рассужде­нии: «В грамматике достаточно знать только имена существитель­ные, т. к. глагол, наречие, прилагательное и т. д. - все это существительные».
Многозначными могут быть не только отдельные слова, но и части фраз, и целые фразы. Напр., высказывание «Часть программы





[202]
полностью не была выполнена» может означать, что эта часть ока­залась полностью невыполненной, но может означать, что она была выполнена неполностью. Логическая ошибка, связанная с подменой одного значения высказывания другим возможным его значением, именуется амфиболией.
МНОЖЕСТВ ТЕОРИЯ
— математическая теория, изучающая точ­ными средствами проблему бесконечности. Предмет М. л. — свойства множеств (совокупностей, классов, ансамблей), гл. обр. бес­конечных.
Множество A есть любое собрание определенных и различи­мых между собой объектов, мыслимое как единое целое. Эти объек­ты называются элементами или членами множества A. Если элемент х принадлежит множеству A, то это обозначается так: хI А; если же х не есть элемент A, то это обозначается так: хIА. Если каждый элемент множества A принадлежит множеству В, то это записывается так: А I В. Множество A называется в этом случае подмножеством множества В, а отношение «I» — отно­шением включения множеств. Множество, не содержащее ни одного элемента, называется пустым и обозначается символом 0. В приложениях М. т. часто рассматривают подмножества некоторого фиксированного множества, которое называют универсальным множеством и обозначают символом U. Важнейшими принципами М. т. являются принцип экстенсиональности и принцип свертывания (абстракции). Согласно принципу экстенсиональ­ности, два множества A и В равны только в том случае, если они состоят из одних и тех же элементов. Согласно принципу свертыва­ния, любое свойство Р определяет некоторое множество А, эле­ментами которого являются объекты, обладающие свойством Р.
Объединение множеств A и В обозначается через AEB. Объе­динение A и В есть множество всех предметов, которые являются элементами множества А или множества В, т. е. х принадлежит объединению А E В, если х принадлежит хотя бы одному из мно­жеств А и В.
Пересечение множеств A и В обозначается через ACB. Пере­сечение A и В есть множество всех предметов, являющихся элемен­тами обоих множеств A и В, т. е. х принадлежит пересечению ACB, если х принадлежит как множеству A, так и В.
Разность множеств А — В есть множество элементов A, не принадлежащих В.
Дополнением множества A (обозначается A') называется множество элементов универсального множества U, не принадле­жащих A, т. е. U - А.
[203]
Для любых подмножеств A, В и С универсального множества U справедливы следующие важные равенства:


Некоторые из перечисленных равенств имеют специальные на­звания: 7 и 7' — законы идемпотентности, 9 и 9' — законы погло­щения, 10 и 10' — законы де Моргана.
Классическая М. т. исходит из признания применимости к бес­конечным множествам принципов логики. В развитии М. т. в начале XX в. выявились трудности, связанные с обнаружением парадоксов — противоречий, к которым приводит применение законов фор­мальной логики к бесконечным множествам. Дальнейшая разра­ботка М. т. была связана с уточнением понятия множества и устра­нением парадоксов.
МОДАЛЬНАЯ ЛОГИКА
— раздел неклассической логики, в ко­тором исследуются логические связи модальных высказы­ваний, т. е. высказываний, включающих модальности. М. л. слага­ется из ряда направлений, каждое из которых занимается модаль­ными высказываниями определенного типа. Так, теория логических модальностей изучает логическое поведение высказываний, вклю­чающих модальные понятия «логически необходимо», «логически возможно», «логически случайно». Логика эпистемическая исследует высказывания, содержащие разного рода теоретико-познавательные понятия: «верифицируемо», «непроверяемо», «фальсифицируемо», «полагает», «сомневается», «отвергает» и т. п. Деонтическая логика изучает логические связи нормативных высказываний. Оценок логика занимается аксиологическими модальностями, логика времени — вре­менными модальностями и т. д.
Модальные понятия разных типов имеют общие формальные свойства. Так, независимо от того, к какой группе относятся эти понятия, они определяются друг через друга по одной и той же схеме. Нечто возможно, если противоположное не является необхо­димым; разрешено, если противоположное не обязательно; допус-



[204]
кается, если нет убеждения в противоположном. Случайно то, что не является ни необходимым, ни невозможным. Безразлично то, что не обязательно и не запрещено. Неразрешимо то, что недока­зуемо и неопровержимо, и т. п.
Подобным же образом сравнительные модальные поня­тия разных групп определяются по одной и той же схеме: «первое лучше второго» равносильно «второе хуже первого», «первое рань­ше второго» равносильно «второе позже первого», «первое при­чина второго» равносильно «второе следствие первого» и т. д.
В каждом направлении М. л. доказуема своя версия принципа модальной полноты, являющегося модальным аналогом за­кона исключенного третьего. В теории логических модальностей прин­цип полноты утверждает, что каждое высказывание является или необходимым, или случайным, или невозможным; в деонтической логике — что всякое действие или обязательно, или нормативно без­различно, или запрещено; в логике оценок — что всякий объект явля­ется или хорошим, или оценочно безразличным, или плохим и т. д.
В каждом направлении М. л. есть и своя версия принципа модальной непротиворечивости, являющегося модаль­ным аналогом закона непротиворечия: высказывание не может быть как обязательным, так и запрещенным; объект не может быть и хорошим, и плохим, и т. д.
Модальные понятия, относящиеся к разным группам, имеют разное содержание. При сопоставлении таких понятий (напр., «не­обходимо», «доказуемо», «убежден», «обязательно», «хорошо», «все­гда») складывается впечатление, что они не имеют ничего общего. Однако М.л. показывает, что это не так. Модальные понятия разных групп выполняют одну и ту же функцию: они уточняют устанавли­ваемую в высказывании связь, конкретизируют ее. Правила их упот­ребления определяются только этой функцией и не зависят от со­держания высказываний. Поэтому данные правила являются еди­ными для всех групп понятий и имеют чисто формальный характер.
В последние десятилетия М.л. бурно разрастается, включая в свою орбиту все новые группы модальных понятий. Существенно усовершенствованы способы ее обоснования. Это придало М.л. но­вый динамизм и поставило ее в центр современных логических исследований (см.: Логика изменения, Предпочтений логика, При­чинности логика).
МОДАЛЬНОСТЬ (от лат., modus — мера, способ)
— оценка выска­зывания, данная с той или иной точки зрения. Модальная оценка выражается с помощью понятий «необходимо», «возможно», «до­казуемо», «опровержимо», «обязательно», «разрешимо» и т. п.


[205]
О предмете S можно просто сказать, что он имеет свойство Р. Но можно, сверх того, уточнить, является ли эта связь S и Р необ­ходимой или же она случайна, всегда ли S будет Р или нет, хорошо ли, что S есть Р, или плохо, доказано ли, что S есть Р, или это только предполагается и т. д. Результатами таких уточнений будут модальные высказывания разных типов. Общая их форма: М (S есть Р) или М (S не есть Р); вместо М в эту форму могут подставляться различные понятия, определяющие тип связи субъекта и предика­та. Напр., из немодального высказывания «Цезий — металл» можно образовать модальные высказывания «Возможно, что цезий — ме­талл», «Хорошо, что цезий — металл», «Немыслимо, чтобы цезий был металлом», «Доказано, что цезий — металл» и т. д. Модальной оценке могут быть подвергнуты не только связи предметов и при­знаков, но и связи других типов. Напр., из сложного высказывания «Если металлический стержень нагреть, он удлинится» можно по­лучить модальные высказывания «Необходимо, что если металли­ческий стержень нагреть, он удлинится», «Всегда будет так, что металлический стержень удлиняется, если его нагреть» и т. п.
Одно и то же высказывание может стать объектом нескольких последовательных модальных оценок с одной или разных точек зре­ния («Хорошо, что доказано, что цезий — металл»).
Логические связи модальных высказываний являются объек­том исследования модальной логики. Из разнообразных возможных типов модальных оценок она выбирает немногие, наиболее инте­ресные.
В современной модальной логике исследуются следующие груп­пы модальных понятий:
>> логические М. (абсолютные: «логически необходимо», «ло­гически случайно», «логически возможно», «логически невозмож­но»; сравнительные: «логически влечет», «есть логическое следствие»);
>> физические (онтологические, каузальные) М. (абсолют­ные: «физически необходимо», «физически случайно», «физически невозможно», «физически возможно»; сравнительные: «есть причи­на», «есть следствие», «не является ни причиной, ни следствием»);
>> теоретико-познавательные (эпистемические) М. (от­носящиеся к знанию: «доказуемо», «опровержимо», «неразреши­мо»; относящиеся к убеждению: «убежден», «сомневается», «отвер­гает», «допускает»; связанные с истинностной характеристикой, абсолютные: «истинно», «ложно», «неопределенно»; сравнитель­ные: «вероятнее», «менее вероятно», «равновероятно»);
>> деонтические (нормативные) М. («обязательно», «нор­мативно безразлично», «запрещено», «разрешено»);



[206]
>> аксиологические (оценочные) М. (абсолютные: «хоро­шо», «аксиологически безразлично», «плохо»; сравнительные: «луч­ше», «равноценно», «хуже»);
>> временные М. (абсолютные: «было», «есть», «будет»; срав­нительные: «раньше», «одновременно», «позже»).
Логические М. изучались еще Аристотелем (384—322 до н. э.) и средневековыми логиками. Детальное исследование других групп М. началось в 50-е годы нашего века, хотя первые упоминания о них относятся еще к поздней античности и средним векам (см.: Аксио­логические М., Деонтические М., Логика времени, Логика измене­ния, Эпистемическая логика, Предпочтений логика, Причинности логика).
МОДЕЛЬ (от лат. modulus — мера, образец, норма)
— а) в самом широком смысле — любой мысленный или знаковый образ модели­руемого объекта (оригинала). К их числу относятся гносеологиче­ские образы (воспроизведение, отображение исследуемого объек­та или системы объектов в виде научных описаний, теорий, фор­мул, систем упражнений и т. п.), схемы, чертежи, графики, планы, карты и т. д.; б) специально создаваемый или специально подби­раемый объект, воспроизводящий характеристики изучаемого объекта. Большую роль в современной науке играют т.наз. знако­вые М., позволяющие в виде формул, уравнений, графиков и т. п. отображать существенные отношения между изучаемыми предме­тами, явлениями, различные процессы. Пример знаковой М. — дифференциальное уравнение в математике, описывающее (мо­делирующее) протекание во времени к.-л. физического процесса. Знаковые М. широко используются в информатике при создании соответствующих программ для ЭВМ; к их числу принадлежат М., воспроизводящие решение сложных задач, специфических для деятельности человеческого мозга и имеющих творческий характер (М., относимые в информатике к искусственному ин­теллекту). Между М. и изучаемым объектом (оригиналом), кото­рый может представлять собой весьма сложную систему, должно существовать сходство в каких-то физических характеристиках, или в структуре, или в функциях (см.: Моделирование).
В математической логике под М. понимается интерпретация к.-л. логико-математических предложений и их систем. В разрабатыва­емой в математической логике теории М. под М. понимается про­извольное множество элементов с определенными на нем функ­циями и предикатами (см.: Семантика логическая). Понятие М. яв­ляется одним из центральных и сложных понятий теории познания, поскольку оно опирается на понятие отражения, истины, сход-


[207]
ства, различия, правдоподобия и т. п.; роль его в методологии науки огромна.
МОДЕЛЬ СЕМАНТИЧЕСКАЯ
- система значений, приписыва­емых выражениям некоторого формализованного языка, то же, что интерпретация. Логические системы часто строятся в виде фор­мального исчисления, принимающего во внимание лишь внешний вид формул и символов. Исчисление превращается в язык после того, как его символом придано некоторое значение и указана область объектов, к которой относятся его выражения и формулы. После этого мы можем говорить об истинности и ложности фор­мул исчисления. М. с. как раз и называют систему значений или область объектов, которые превращают формулы логического ис­числения в истинные или ложные утверждения.
МОДУС (лат. modus - мера, способ, образ, вид)
- философский термин, обозначающий свойство предмета, присущее ему только в некоторых состояниях и зависящее от окружения предмета и тех связей, в которых он находится. М. противопоставляется атрибу­ту— неотъемлемому свойству предмета, без которого он не может ни существовать, ни мыслиться.
В логике М. - разновидность некоторой общей схемы рассуж­дения. Чаще всего говорят о М., или формах, силлогизма (пра­вильных и неправильных). К М., скажем, гипотетического силло­гизма относятся М. поненс и М. толленс, к М. дизъюнктивного сил­логизма — М. толлендо поненс и М. понендо толленс.
МОДУС ПОНЕНДО ТОЛЛЕНС (лат. modus ponendo tollens)
- тер­мин средневековой логики, обозначающий следующие схемы рас­суждения:
Либо A, либо В; А.

и
Либо A, либо В; В.

Неверно В.
Неверно A.


Здесь A и В — некоторые высказывания; «либо A, либо В» и «A» — посылки; «неверно, что B» («не-В») — заключение; горизонталь­ная черта стоит вместо слова «следовательно». Другая запись:
Либо A, либо В. А. Следовательно, не-В. Либо A, либо В. В. Следовательно, не-А.
Посредством этих схем от утверждения двух взаимоисключа­ющих альтернатив и установления того, какая из них имеет мес­то, осуществляется переход к отрицанию второй альтернативы: либо первое, либо второе, но не оба вместе; есть первое, значит, второго нет. Напр.:



[208]
Достоевский родился либо в Москве, либо в Петербурге.
Он родился в Москве.______
Неверно, что Достоевский родился в Петербурге.
Дизъюнкция, входящая в М. п. т., является исключающей, она означает: истинно первое или истинно второе, но не оба вместе. Такое же рассуждение, но с неисключающей дизъюнкцией (пер­вое или второе, но возможно, что и первое, и второе), логически неправильно. От истинных посылок оно может вести к ложному заключению. Напр.:
На Южном полюсе был Амундсен или был Скотт.
На Южном полюсе был Амундсен.
Неверно, что там был Скотт.
Обе посылки истинны: и Амундсен, и Скотт достигли Южного полюса, заключение же ложно. Правильным является умозаклю­чение:
На Южном полюсе первым был Амундсен или Скотт.
На этом полюсе первым был Амундсен._______
Неверно, что там первым был Скотт.
МОДУС ПОНЕНС (лат. modus ponens)
— термин средневековой логики, обозначающий правило вывода и соответствующий ему логический закон.
Правило вывода М. п., обычно называемое правилом от­деления (иногда гипотетическим силлогизмом), по­зволяет от утверждения условного высказывания и утверждения его основания (антецедента) перейти к утверждению следствия (консеквента) этого высказывания:
Если А, то В; А.
В.

Здесь A и В — некоторые высказывания, «если А, то В» и «A» — посылки, «B» - заключение; горизонтальная черта стоит вместо слова «следовательно». Другая запись:
Если А, то В. А. Следовательно, В.
Благодаря этому правилу от посылки «если А, то В», используя посылку «A», мы как бы отделяем заключение «B». Напр.:
Если у человека повышенная температура, он болен.
У человека повышенная температура.
Человек болен.


[209]
Это правило постоянно используется в наших рассуждениях. Впервые оно было сформулировано, насколько можно судить, учеником Аристотеля Теофрастом еще в III в. до н. э.
Соответствующий правилу отделения логический закон с исполь­зованием символики логической формулируется так (р, q — некоторые высказывания; & — конъюнкция, «и»; -> импликация, «если, то»):
((p->q)&p)->q,
если верно, что если р, то q, и р, то верно q. Напр.: «Если при дожде земля мокрая и идет дождь, то земля является мокрой».
Рассуждение по правилу М.п. идет от утверждения основа­ния истинного условного высказывания к утверждению его след­ствия. Это логически корректное движение мысли иногда пута­ется со сходным, но логически неправильным ее движением от утверждения следствия истинного условного высказывания к утверждению его основания. Напр., правильным является умо­заключение:
Если висмут — металл, он проводит электрический ток.
Висмут — металл. _______________
Висмут проводит электрический ток.
Но внешне сходное с ним умозаключение
Если висмут — металл, он проводит электрический ток.
Висмут проводит электрический ток.
Висмут — металл.
логически некорректно. Рассуждая по последней схеме, можно прийти от истинных посылок к ложному заключению. Напр.:
Если у человека повышенная температура, он болен.
Человек болен.________________________
У него повышенная температура.
Многие болезни, как известно, протекают без повышения темпе­ратуры; из наличия болезни нельзя заключать о повышении тем­пературы. Истинность посылок не гарантирует истинности заклю­чения.
Против смешения правил М. п. с указанной неправильной схе­мой предостерегает совет: от подтверждения основания к под­тверждению следствия рассуждать допустимо, от подтверждения следствия к подтверждению основания — нет.
МОДУС ТОЛЛЕНДО ПОНЕНС (лат. modus tollendo ponens)
- тер­мин средневековой логики, обозначающий разделительно-кате-



[210]
горическое умозаключение: первое или второе; не первое; значит, второе. Первая посылка умозаключения - разделительное (дизъ­юнктивное) высказывание; вторая — категорическое высказыва­ние, отрицающее один из двух членов дизъюнкции; заключением является другой ее член:
А или В; неверно A.
В.



Или:

A или В; неверно В.
А.


Здесь A и В — некоторые высказывания, черта стоит вместо слова «следовательно». Другая форма записи:
А или В. Не-А. Следовательно, В.
А или В. Не-В. Следовательно, A.
Напр.:
Множество является конечным или оно бесконечно.
Множество не является конечным.__________
Множество бесконечно.
Иногда эту схему рассуждения именуют дизъюнктивным силлогизмом.
С использованием символики логической умозаключение форму­лируется так (v — дизъюнкция, «или»; ˜ — отрицание, «неверно, что»):
A v B, ˜ A.
В.

Или:
a v b, ˜ b
А.

В современной логике М.т. п. называется также правилом удаления дизъюнкции.
МОДУС ТОЛЛЕНС (лат. modus tollens)
- термин средневековой логики, обозначающий следующую схему рассуждения:
Если A, то В; неверно В.
Неверно А.

Здесь A и В — некоторые высказывания; «если А, то В» и «неверно, что В» («не-В») - посылки; «неверно, что A» («не-A») — заключе-


[211]
ние; горизонтальная черта стоит вместо слова «следовательно». Другая запись:
Если А, то В. Не-В. Следовательно, не-А.
Посредством этой схемы от утверждения условного высказы­вания и отрицания его следствия (консеквента) осуществляется переход к отрицанию основания (антецедента) данного выска­зывания. Напр.:



<< Пред. стр.

страница 7
(всего 13)

ОГЛАВЛЕНИЕ

След. стр. >>

Copyright © Design by: Sunlight webdesign