LINEBURG


<< Пред. стр.

страница 4
(всего 13)

ОГЛАВЛЕНИЕ

След. стр. >>


[73]
Нельзя вместе с тем отождествлять Д. с переходом от общего к частному, а индукцию — с переходом от частного к общему. В рас­суждении «Шекспир писал сонеты; следовательно, неверно, что Шекспир не писал сонетов» есть Д., но нет перехода от общего к частному. Рассуждение «Если алюминий пластичен или глина пла­стична, то алюминий пластичен» является, как принято думать, индуктивным, но в нем нет перехода от частного к общему. Д. — это выведение заключений, столь же достоверных, как и приня­тые посылки, индукция - выведение вероятных (правдоподоб­ных) заключений. К индуктивным умозаключениям относятся как переходы от частного к общему, так и аналогия, каноны индукции, целевое обоснование и т. д.
Тот особый интерес, который проявляется к дедуктивным умо­заключениям, понятен. Они позволяют из уже имеющегося зна­ния получать новые истины, и притом с помощью чистого рассуж­дения, без обращения к опыту, интуиции, здравому смыслу и т. п. Д. дает стопроцентную гарантию успеха, а не просто обеспечивает ту или иную — быть может, и высокую — вероятность истинного заключения. Отправляясь от истинных посылок и рассуждая де­дуктивно, мы обязательно во всех случаях получим достоверное знание.
Подчеркивая важность Д. в процессе развертывания и обосно­вания знания, не следует, однако, отрывать ее от индукции и недо­оценивать последнюю. Почти все общие положения, включая и научные законы, являются результатами индуктивного обобщения. В этом смысле индукция — основа нашего знания. Сама по себе она не гарантирует его истинности и обоснованности, но она по­рождает предположения, связывает их с опытом и тем самым со­общает им определенное правдоподобие, более или менее высо­кую степень вероятности. Опыт — источник и фундамент человеческого знания. Индукция, отправляющаяся от того, что постигается в опыте, является необходимым средством его обоб­щения и систематизации.
В обычных рассуждениях Д. только в редких случаях предстает в полной и развернутой форме. Чаще всего указываются не все ис­пользуемые посылки, а лишь некоторые. Общие утверждения, ко­торые кажутся хорошо известными, опускаются. Не всегда явно формулируются и заключения, вытекающие из принятых посылок. Сама логическая связь, существующая между исходными и выво­димыми утверждениями, лишь иногда отмечается словами, подоб­ными «следовательно» и «значит». Нередко Д. является настолько сокращенной, что о ней можно только догадываться. Проводить


[74]
дедуктивное рассуждение, ничего не опуская и не сокращая, об­ременительно. Вместе с тем всякий раз, когда возникает сомне­ние в обоснованности сделанного вывода, необходимо возвращать­ся к началу рассуждения и воспроизводить его в возможно более полной форме. Без этого трудно или даже невозможно обнаружить допущенную ошибку.
Дедуктивная аргументация представляет собой выве­дение обосновываемого положения из иных, ранее принятых по­ложений. Если выдвинутое положение удается логически (дедук­тивно) вывести из уже установленных положений, это означает, что оно приемлемо в той же мере, что и сами эти положения. Обоснование одних утверждений путем ссылки на истинность или приемлемость других утверждений — не единственная функция, выполняемая Д. в процессах аргументации. Дедуктивное рассужде­ние служит также для верификации (косвенного подтверждения) утверждений: из проверяемого положения дедуктивно выводятся его эмпирические следствия; подтверждение этих следствий оце­нивается как индуктивный довод в пользу исходного положения. Дедуктивное рассуждение используется также для фальсификации утверждений путем показа того, что вытекающие из них след­ствия являются ложными. Не достигшая успеха фальсификация представляет собой ослабленный вариант верификации: неудача в опровержении эмпирических следствий проверяемой гипотезы является аргументом, хотя и весьма слабым, в поддержку этой гипотезы. И наконец, Д. используется для систематизации теории или системы знания, прослеживания логических связей входящих в нее утверждений, построения объяснений и пониманий, опи­рающихся на общие принципы, предлагаемые теорией. Проясне­ние логической структуры теории, укрепление ее эмпирической базы и выявление ее общих предпосылок является вкладом в обо­снование входящих в нее утверждений.
Дедуктивная аргументация является универсальной, при­менимой во всех областях рассуждения и в любой аудитории. «И если блаженство есть не что иное, как жизнь вечная, — пишет средневековый философ И.С.Эриугена, — а жизнь вечная — это познание истины, то блаженство - это не что иное, как познание истины». Это теологическое рассуждение представляет собой де­дуктивное рассуждение, а именно силлогизм.
Удельный вес дедуктивной аргументации в разных областях знания существенно различен. Очень широко она применяется в математике и математической физике и только эпизодически - в истории или эстетике. Имея в виду сферу приложения Д., Аристо-


[75]
тель писал: «Не следует требовать от оратора научных доказательств, точно так же как от математика не следует требовать эмоциональ­ного убеждения» (Метафизика. II, 3). Дедуктивная аргументация является очень сильным средством, но, как и всякое такое сред­ство, она должна использоваться узконаправленно. Попытка стро­ить аргументацию в форме Д. в тех областях или в той аудитории, которые для этого не годятся, приводит к поверхностным рас­суждениям, способным создать только иллюзию убедительности.
В зависимости от того, насколько широко используется дедук­тивная аргументация, все науки принято делить на дедуктив­ные и индуктивные. В первых используется по преимуще­ству или даже единственно дедуктивная аргументация. Во вторых такая аргументация играет лишь заведомо вспомогательную роль, а на первом месте стоит эмпирическая аргументация, имеющая индуктивный, вероятностный характер. Типично дедуктивной на­укой считается математика, образцом индуктивных наук являют­ся естественные науки. Однако деление наук на дедуктивные и индуктивные, широко распространенное еще в начале этого века, сейчас во многом утратило свое значение. Оно ориентировано на науку, рассматриваемую в статике, как систему надежно и окон­чательно установленных истин.
Понятие Д. является общеметодологическим понятием. В логи­ке ему соответствует понятие доказательства.
ДЕЛЕНИЕ ЛОГИЧЕСКОЕ
— логическая операция, посредством которой объем делимого понятия распределяется на известные классы (множества) с точки зрения некоторого признака. Посред­ством операции Д. л. раскрывается объем того или иного поня­тия, выясняется, из каких подмножеств состоит множество, соответствующее делимому понятию. Так, по строению листь­ев множество деревьев может быть подразделено на два под­множества: лиственные деревья и хвойные деревья. Иногда говорят не о Д. л. объема понятия, а просто о Д. л. понятия. Делимое понятие есть понятие, подлежащее делению. Подмно­жества, которые получаются в результате Д. л. понятия, назы­ваются членами деления. Признак, по которому производится Д., называют основанием Д. л. Д. л. может быть произведено по признаку, выступающему в различных вариантах (разновидно­стях). Так, треугольники по признаку величины угла могут быть подразделены на прямоугольные, тупоугольные и остроуголь­ные именно потому, что признак величины угла может высту­пать как признак прямоугольности, тупоугольности и остро-угольности.


[76]
Получившиеся в результате Д. л. подмножества (члены деле­ния) могут, в свою очередь, подвергаться Д. л. Такой вид Д. л. называется последовательным. При выполнении операции Д. л. дол­жны соблюдаться следующие правила:
1. Д. л. должно быть соразмерным. Это значит, что объем дели­мого понятия должен быть равен сумме объемов членов Д. л. Напр., это правило будет нарушено, если все леса разделить на хвойные и лиственные (пропущен член Д. л.: смешанные).
2. Д. л. на каждом его этапе должно производиться по одному основанию. Мы нарушим это правило, если, напр., разделим меж­дународные договоры на справедливые, несправедливые, ус­тные и письменные: сначала международные договоры мы разде­лили по признаку их равноправности, а затем — по признаку формы их заключения.
3. Члены Д. л. должны исключать друг друга. Пример, связанный с нарушением этого правила: «Войны бывают справедливые, не­справедливые и освободительные» (освободительные войны вхо­дят в объем справедливых).
4. Д. л. должно быть непрерывным. Не будет непрерывным, напр., такое Д. л.: «Грамматические предложения бывают простыми, слож­носочиненными и сложноподчиненными». На первом этапе сле­довало бы грамматические предложения подразделить на простые и сложные, а затем сложные подразделить на сложносочиненные и сложноподчиненные.
Д. л. может быть дихотомическим (деление надвое): объем делимого понятия А делится на два исчерпывающих его взаимо­исключающих множества В и не-В. Так, понятие позвоночных (A) мы можем подразделить сначала на млекопитающих (В) и не­млекопитающих (не-В). Затем понятие не-В можем подразделить на птиц (С) и не-птиц (не-С). Продолжается такое деление до тех пор, пока отрицательное понятие в некоторой из пар дихотоми­чески полученных понятий не окажется пустым. Мы подразделим всех позвоночных животных на млекопитающих, птиц, пресмы­кающихся, земноводных, рыб и круглоротых.
ДЕНОТАТ (от лат. denoto — обозначаю), или: Десигнат, предметное значение,
— в логике и семантике предмет, обозначаемый собственным именем некоторого языка (в фор­мализованном языке - константой или термом), или класс пред­метов, обозначаемых общим (нарицательным) именем (в фор­мализованном языке - предметной переменной). Напр., собственное имя «Волга» обозначает великую русскую реку Вол­гу, а сама река Волга является Д. имени «Волга». Общее имя «кос-


[77]
монавт» обозначает всех людей, побывавших в космосе, и класс этих людей будет Д. данного общего имени. Другой характеристи­кой имени является его смысл — совокупность черт предметов, обозначаемых именем, то, что мы усваиваем, когда понимаем имя, и то, благодаря чему мы узнаем, какие предметы оно обозначает.
Д. собственных и общих имен, используемых в повседневном и научном языке, далеко не всегда являются реально существу­ющие предметы и совокупности таких предметов. Часто в качестве Д. выступают идеализированные, абстрактные объекты, напр. объек­ты арифметики или геометрии; литературные герои, напр. Гамлет или Наташа Ростова; вымышленные, фантастические существа, скажем, гуингмы, и т. п. Если Д. некоторого имени не существует как некоторый реальный объект или совокупность таких объек­тов, то иногда считают, что такое имя вообще лишено Д. и обла­дает лишь одним смыслом. Использование языковых выражений такого рода может приводить к ошибкам и противоречиям. Напр., выражение «нынешний король Франции», очевидно, обозначает некоторого человека, относительно которого можно высказать то или иное утверждение, допустим: «Нынешний король Франции лыс». Если мы захотим установить, истинно или ложно это утверж­дение, мы можем перебрать всех ныне живущих французов с це­лью обнаружить среди них короля. Ясно, что короля среди них мы не найдем и вынуждены будем заключить, что наше утверждение ложно. Следовательно, должно быть истинно противоположное ут­верждение: «Нынешний король Франции не лыс». Но, перебрав всех нелысых французов, мы и среди них не обнаружим короля Франции. Поэтому мы будем вынуждены заключить, что два про­тивоположных утверждения одновременно ложны, что является нарушением закона исключенного третьего. Чтобы избежать подоб­ных ошибок, следует ясно отдавать себе отчет, какого рода суще­ствованием обладает Д. используемого нами имени.
ДЕОНТИЧЕСКАЯ ЛОГИКА (от греч. deon — долг, правильность),
или: Логика норм, нормативная л о г и к а, — раздел ло­гики, исследующий логическую структуру и логические связи нор­мативных высказываний. Анализируя рассуждения, посылками или заключениями которых служат такие высказывания, Д.л. отделяет необоснованные схемы рассуждений от обоснованных и система­тизирует последние.
Д. л. слагается из множества систем, или «логик», различа­ющихся используемыми символическими средствами и доказуе­мыми утверждениями. Вместе с тем эти «логики» имеют общие черты. Предполагается, что все многообразные нормы имеют одну и


[78]
ту же структуру. Выделяются четыре структурных «элемента» нор­мы: характер - норма обязывает, разрешает или запрещает; содержание — действие, которое должно быть, может или не должно быть выполнено; условия приложения; субъект — лицо или группа лиц, которым адресована норма. Не все струк­турные элементы нормы находят выражение в символическом аппарате Д. л. Те системы, в которых учитывается только содержа­ние нормы и ее характер, называются абсолютными (или монадическими). В них норма представляется в виде: «Обязательно (разрешено, запрещено) А», где А — высказывание, которое опи­сывает состояние дел, реализуемое предписываемым действием. Де­онтические системы, в которых учитываются также условия при­ложения нормы, называются относительными (или диадическими). В них норма принимает вид: «Обязательно (разре­шено, запрещено) А в условиях В», где А и В — высказывания, описывающие какие-то состояния.
Подход Д. л. к структуре норм является предельно общим. Это позволяет распространить ее законы на нормы любых видов, не­зависимо от их частных особенностей.
Правила игры и грамматики, законы государства и команды, тех­нические нормы, обычаи, моральные принципы, идеалы и т. д. — нормы всех этих видов имеют одинаковую логическую структуру и демонстрируют одинаковое «логическое поведение».
В Д. л. понятия «обязательно», «разрешено» и «запрещено» обыч­но считаются взаимно определенными.
В Д. л. имеют место закон деонтической непротиво­речивости (выполнение действия и воздержание от него не могут быть вместе обязательными), закон деонтической пол­ноты (всякое действие или обязательно, или безразлично, или запрещено), законы: логические следствия обязательного — обяза­тельны; если действие ведет к запрещенному следствию, то само действие запрещено, и т. п.
Если Д. л. строится как расширение логической теории дей­ствия, различаются действие и (сознательное) воздержание от действия, не равносильное простой бездеятельности. Если в осно­ву Д.л. положена логика взаимодействия, проводится различие меж­ду типами деятельности, связывающей двух субъектов (предос­тавление какого-то объекта, навязывание его и т. п.).
В соответствии с «Юма принципом», невозможен логический переход от утверждений со связкой «есть» к утверждениям со связ­кой «должен». Ни одна из существующих деонтических систем не нарушает данный принцип и не санкционирует переходов от опи-


[79]
сательных посылок к нормативным заключениям. Невозможным считается и логический вывод описательных высказываний из нормативных. Нарушающий якобы это положение «принцип Кан­та» — «Если должен, то может» (обязательность действия влечет его логическую возможность или выполнимость) — не является на самом деле контрпримером. В нем фигурирует не обязывающая норма, а описательное высказывание о ней.
Попытки свести Д. л. к логике описательных высказываний не увен­чались успехом и сейчас оставлены. Более плодотворным является истолкование норм как частного случая оценок. Норма представляет собой групповую оценку, подкрепленную угрозой наказания (санк­ции), т. е. социально навязанную и социально закрепленную оценку. «Обязательно действие A» можно определить так: «Действие A оце­нивается положительно; и хорошо, что уклонение от этого действия сопровождается наказанием». Такое определение нормативных по­нятий через оценочные позволяет свести деонтические модальности к аксиологическим модальностям и Д. л. к оценок логике.
Д. л. нашла уже достаточно широкие и интересные приложения. Понимание логических характеристик норм необходимо для реше­ния вопросов о месте и роли норм в научном и ином знании, о взаимных связях норм и оценок, норм и описательных высказыва­ний и т. д. Знание логических законов, которым подчиняется мо­ральное, правовое, экономическое и всякое иное рассуждение, использующее и обосновывающее нормы, позволяет сделать бо­лее ясными представления об объектах и методах наук, опериру­ющих нормами, оказать существенную помощь в их систематизации. Распространяя формальные критерии рациональности на область нор­мативного рассуждения, Д. л. позволяет дать аргументированную кри­тику концепциям, утверждающим алогичность такого рассуждения и настаивающим на невозможности сколь-нибудь убедительного обоснования моральных, правовых и иных норм и их систем.
Источником философского и методологического интереса яв­ляется также то, что Д. л. заставляет по-новому взглянуть на ряд собственно логических проблем. В частности, построение логиче­ской теории нормативных высказываний, не имеющих истиннос­тного значения, означает выход логики за пределы «царства исти­ны», в котором она находилась до недавних пор. Пони-мание логики как науки о приемах получения истинных следствий из истинных посылок должно в связи с этим уступить место более широкой концепции логики.
ДЕОНТИЧЕСКАЯ МОДАЛЬНОСТЬ (от греч. deon - долг, пра­вильность),
или: Нормативная модальность, модаль-


[80]
ность долженствования, - характеристика практическо­го действия с точки зрения определенной системы норм. Норма­тивный статус действия обычно выражается понятиями «обяза­тельно», «разрешено», «запрещено», «(нормативно) безразлично», используемыми в нормативном высказывании. Напр.: «Обязатель­но надо заботиться о близких», «Разрешено ездить в автобусе», «Безразлично, как человек называет свою собаку» и т. п.; здесь обязанность является характеристикой определенного круга дей­ствий с точки зрения принципов морали; разрешение относится к действию, не противоречащему системе правовых норм; норма­тивное безразличие утверждается относительно достаточно нео­пределенной системы норм, скажем, совокупности требований обычая, традиции и т. п.
Вместо слов «обязательно», «разрешено», «запрещено» могут использоваться слова «должен», «может», «не должен», «необхо­димо» и т. п.
При употреблении понятий «обязательно», «разрешено» и т. п. всегда имеется в виду какая-то нормативная система, налагающая обязанность, предоставляющая разрешение и т. д. Поскольку су­ществуют различные системы норм и нередко они не согласуются друг с другом, действие, обязательное в рамках одной системы, может быть безразличным или даже запрещенным в рамках дру­гой. Напр., обязательное с точки зрения морали может быть без­различным с точки зрения права; запрещенное в одной правовой системе может разрешаться другой такой системой.
Д. м. понятия, являющиеся необходимыми структурными ком­понентами нормативных высказываний, изучаются этикой, тео­рией права и другими дисциплинами, занимающимися нормами. Логическое исследование норм и нормативных понятий осуще­ствляется деонтической логикой, называемой также логикой норм. В ней деонтические понятия рассматриваются как модаль­ные характеристики высказываний, говорящих либо о действиях, либо о состояниях, возникающих в результате того или иного дей­ствия. С помощью этих понятий все действия, рассматриваемые с точки зрения какой-то системы норм, разбиваются на три класса: обязательные, нормативно безразличные и запрещенные. К раз­решенным относятся действия, являющиеся обязательными или безразличными.
По своим логическим свойствам Д. м. аналогичны модальнос­тям других групп: логическим («необходимо», «случайно», «не­возможно»), эпистемическим («убежден», «сомневается», «отвергает»), аксиологическим («хорошо», «(оценочно) безразлично», «плохо») и др. Напр., действие и воздержание от


[81]
него не могут быть обязательными аналогично тому, как нельзя быть убежденным и в истинности, и в ложности какого-то утверждения, нельзя считать хорошим и наличие, и отсутствие чего-то и т. п.
Понятия «обязательно», «разрешено» и «запрещено» считают­ся взаимно определимыми:
>> обязательно то, от чего не разрешено воздерживаться; обя­зательно все, что запрещено не делать;
>> разрешено то, от выполнения чего не обязательно воздер­живаться; разрешено все, что не запрещено;
>> запрещено то, от чего обязательно воздерживаться; запре­щено все, что не является разрешенным.
По поводу принципа «разрешено все, что не запрещено» нуж­но отметить, что он принимается не во всех системах деонтиче­ской логики. О системах, включающих данный принцип, гово­рится, что они определяют либеральный нормативный режим; системы, не предполагающие, что из отсутствия запрещения ло­гически вытекает разрешение, характеризуют деспотический нормативный режим.
Безразлично действие, не являющееся ни обязательным, ни запрещенным, или, что то же, действие, которое разрешено вы­полнять и разрешено не выполнять.
Эти определения означают, что любую систему норм можно сформулировать не только в виде перечня «обязанностей», но и в форме множества «запрещений» или множества «разрешений» (включающего, конечно, и «неразрешения»).
Понятие обязанности (или деонтической необходимости) мож­но пояснить путем противопоставления ее другим видам необхо­димости. В зависимости от основания утверждения о необходимо­сти можно выделить три ее вида: логическую, физическую (называемую также онтологической или каузаль­ной) и деонтическую (нормативную) необходимость. Логи­чески необходимо все, что вытекает из законов логики. Физиче­ски необходимо то, что следует из законов природы. Деонтически необходимо то, что вытекает из законов или норм, действующих в обществе, т. е. то, отрицание чего противоречит таким законам или нормам. Что касается взаимных связей трех видов необходимости, то предполагается, что действие, вменяемое в обязанность, долж­но быть логически и физически возможным, поскольку невозмож­но сделать то, что противоречит законам логики или природы.
Вместе с тем аналогия между логической и физической необ­ходимостью, с одной стороны, и деонтической необходимостью, с другой, не является полной. Необходимое в силу законов логи­ки или законов природы реально существует. Но из обязательное-


[82]
ти чего-то не следует, что оно имеет место. Принципы морали, законы государства, правила обычая или ритуала и т. п., как изве­стно, нарушаются.
В логике предложено определение обязательности - а значит, и других деонтических понятий — через понятие наказания (санкции): действие обязательно, когда воздержание от него вле­чет за собой наказание. Однако при таком определении само понятие наказания должно быть нормативным, иначе окажет­ся, что нормативное высказывание сводится к высказыванию опи­сательному.
Нормы являются частным случаем оценок (см.: Оценочное выс­казывание). Это дает основание определить «обязательно» через «хорошо»: действие обязательно, когда оно представляет собой позитивную ценность, и хорошо, что воздержание от него ведет к наказанию. К примеру: «Обязательно быть честным, когда правди­вость оценивается позитивно, и хорошо, что нечестность влечет осуждение». Д.м. является, таким образом, частным случаем акси-ологической (оценочной) модальности.
ДЕСКРИПЦИЯ ОПРЕДЕЛЕННАЯ (от лат. descriptio - описание)
-языковое выражение, служащее для обозначения единичных объек­тов посредством описания их свойств или отношений к другим объектам. В языке Д. о. выполняет те же функции, что и соб­ственное имя. Объект можно обозначить именем, напр. «Го­мер», «Эверест», «Авраам Линкольн», но и его же можно выде­лить и посредством Д. о.: «Тот древнегреческий поэт, которому приписывают авторство "Илиады" и "Одиссеи"», «Та горная вер­шина, которая является самой высокой на земном шаре», «Тот президент США, который возглавил борьбу за освобождение не­фов». Д. о. необходима тогда, когда в языке нет собственного име­ни для некоторого объекта, напр.: «самый глупый человек на Зем­ле», «изобретатель колеса», «самая плодоносная яблоня в данном саду». Однако Д.о. может относиться и к тем объектам, которые обозначаются собственными именами.
Для того чтобы использование Д.о. не приводило к противо­речиям, она должна удовлетворять следующим двум условиям: 1) существования: объект, к которому относится Д.о., должен существовать; 2) единственности: этот объект должен быть един­ственным.
ДИАГРАММЫ ВЕННА
- геометрическое наглядное представле­ние отношений между классами (объемами понятий) в буле­вой алгебре с помощью кругов или иных фигур. Д. В. были введены в логику в конце XIX в. англ. логиком Дж. Венном.


[83]
Элемент 1 булевой алгебры представляется как универсаль­ный класс, или рассматриваемая предметная область; ее мож­но изображать в виде квадрата. Элементу 0 соответствует пустой класс. Некоторый непустой класс А представляется в виде круга, включенного в предметную область. То, что лежит за пределами класса A, является его дополнением А:
Сумма двух классов A E В представляется в виде объединения изоб­ражающих их кругов:
Произведение двух классов ACВ представляется в виде общей ча­сти изображающих их кругов:
Допустим теперь, что нам нужно с помощью Д. В. наглядно представить класс AE(BCС). Сначала образуем класс ВCС, ко­торый представляет собой общую часть классов В и С, а затем к этой общей части добавляем весь класс A и в итоге получаем:
Д. В. используются для наглядной иллюстрации справедливости аксиом и теорем булевой алгебры, а также для представления от­ношений между объемами понятий.
ДИАЛЕКТИЧЕСКАЯ ЛОГИКА
- название философской теории, пытавшейся выявить, систематизировать и обосновать в качестве


[84]
универсальных основные особенности мышления коллекти­вистического общества (средневекового феодального обще­ства, тоталитарного общества и др.). Основной принцип Д.л. (ее «ядро») провозглашает сближение и отождествление противопо­ложностей: имеющегося в разуме и существующего в действитель­ности, количества и качества, исторического и логического, сво­боды и необходимости и т. д. Д. л. отражала сочетание коллективистической твердости ума с его софистической гиб­костью. Результатом ее применения к осмыслению социальных процессов являлась двойственность, мистифицированность со­циальных структур и отношений: провозглашаемое в тотали­тарных государствах право на труд оказывалось одновременно и обязанностью, наука — идеологией, а идеология — научной, свобода — (осознанной) необходимостью, выборы — провер­кой лояльности, искусство — государственной мифологией и т. п. Однако этот парадокс «прошлого — будущего», «полновластия народа под руководством партии», «высоты, зияющей котлова­ном» мало заботил Д. л., относившую его к особым свойствам нового, радикально порывающего с метафизическим прошлым мышления.
Эту сторону коллективистического мышления, его постоянное тяготение к парадоксу и соединению вместе несовместимых по­нятий хорошо выразил Дж. Оруэлл в романе «1984». В описыва­емом им обществе министерство мира ведает войной, министер­ство любви — охраной порядка, а бесконечно повторяемые главные партийные лозунги гласят: «Война — это мир», «Свобода — это рабство», «Незнание — это сила». Такое «диалектическое мышле­ние» Оруэлл называет «двоемыслием». А. А.3иновьев в книге «Зи­яющие высоты», само название которой навеяно типично коллек­тивистическим соединением несоединимого, удачно пародирует эту бросающуюся в глаза черту коллективистического мышления: «В результате цены на продукты были снижены, и потому они вы­росли только вдвое, а не на пять процентов», «Из душевных пере­живаний ибанцам разрешается радоваться успехам, благодарить за заботу и восторгаться мудростью руководства», «...Мы верим даже в то, во что на самом деле не верим, и выполним все, что на самом деле не выполним» и т. п.
Первую попытку систематического построения Д. л. как прило­жения диалектики к мышлению («субъективной диалектики») предпринял в начале прошлого века Г. Гегель, позаимствовавший все основные идеи диалектики из средневековой философии и теологии. После Гегеля за сто с лишним лет в Д. л. не было внесено


[85]
ничего существенно нового. Все попытки построить связную тео­рию «диалектического мышления» кончились безрезультатно.
Глубинной основой гегелевской диалектики является средне­вековая концепция истории. Последняя представляет собой раз­витие применительно к человеческому обществу христианской доктрины Бога и человека, так что диалектика Гегеля — это рас­пространение не только на общество, но и на природу ключевых идей христианского понимания Бога и человека. Отсюда внутрен­нее противоречие диалектики: одни ее принципы приложимы только к духу, но не к природе, другие — к природе, но не к духу.
Гегель сам обращал внимание на то, что основной принцип диалектики, утверждающий изменчивый и преходящий харак­тер всех конечных вещей, соответствует представлению о все­могуществе Бога. (См.: Энциклопедия философских наук. — М., 1974. - С. 208.) Однако более близким основанием его диалектики было не само по себе абстрактное, бедное «определениями» хри­стианское представление о Боге и даже не связанное с ним пред­ставление о человеке, а именно являющееся их развитием и кон­кретизацией христианское истолкование истории.
Основные идеи, лежащие в основе гегелевской диалектики, просты. «...Все конечное, вместо того чтобы быть прочным и окон­чательным, наоборот, изменчиво и преходяще», поскольку, «бу­дучи в себе самом другим, выходит за пределы того, что оно есть непосредственно, и переходит в свою противоположность». (Там же.) Всякий развивающийся объект имеет свою «линию разви­тия», определяемую его качеством, свою «цель» или «судьбу». Эта линия слагается из отличных друг от друга «отрезков», разделяе­мых характерными событиями («узлами»). Они снимают (отрица­ют) определенное качество, место которого тотчас же занимает другое качество, так что развитие включает подлинные возник­новение и уничтожение. «Этот процесс можно сделать наглядным, представляя его себе в образе узловой линии». (Там же. — С. 261.) Все взаимосвязано со всем, «линии развития» отдельных объек­тов, сплетаясь, образуют единый поток мирового развития. Он имеет свою объективную «цель», внутреннюю объективную логи­ку, предопределяемую самим потоком и не зависящую от «целей» или «судеб» отдельных объектов.
В одной из послегегелевских систематизации диалектики, при­званных сделать ее доступной, одни из этих идей именуются «прин­ципами» («принцип всеобщей взаимосвязи», «принцип развития»), другие — «законами» («закон отрицания отрицания», говорящий о «судьбах» или «целях» объектов, напр. о «целях» пшеничного зер-



[86]
на; «закон единства и борьбы противоположностей», касающий­ся перехода вещей в процессе развития в свою противополож­ность; «закон перехода количества в качество», говорящий об «уз­лах» на «линиях развития» объектов, обладающих качеством). Эта систематизация упускает, однако, главное в гегелевской диалек­тике: идею «цели» или «судьбы», заданной извне. Без этой идеи распространение диалектики на природу, не имеющую — в обыч­ном, но не в гегелевском представлении — «цели» и не подвласт­ную судьбе, кажется грубым насилием над диалектикой, на что обращал внимание еще Д. Лукач.
Основные идеи гегелевской диалектики обнаруживают ясную параллель с характерными чертами христианской историографии. Согласно последней, исторический процесс универсален, всегда и везде его характер один и тот же. История является реализацией определенных целей, но не человеческих, а божественных: хотя человек и ведет себя так, как если бы он был мудрым архитекто­ром своей судьбы, мудрость, обнаруживаемая в его действиях, при­надлежит не ему, а Богу, милостью которого желания человека направляются к достойным целям. Человек является той целью, ради которой происходит история, но вместе с тем он существует всего лишь как средство осуществления божественных предначер­таний. История делится на эпохи, или периоды, каждый из кото­рых имеет свои специфические особенности, свое качество и от­деляется от периода, предшествовавшего ему, каким-то особым («эпохальным», «узловым») событием. Действующим лицом ис­тории является все человечество, все люди и все народы в равной мере вовлечены в единый исторический процесс. История как воля Бога предопределяет самое себя. В ней возникают и реализуются цели, не планируемые ни одним человеческим существом, и ее закономерное течение не зависит от стремления человека управ­лять ею. Историческая эволюция касается самой сущности вещей, их возникновения и уничтожения, ибо Бог — не простой ремес­ленник, формирующий мир из предшествующей материи, а тво­рец, создающий сущее из небытия.
Для средневековой исторической мысли характерен трансцен­дентализм: деятельность божества представляется не как проявля­ющаяся в человеческой деятельности и посредством ее, а как дей­ствующая извне и управляющая ею, не имманентная миру человеческого действия, а трансцендентная ему. Такого рода транс­цендентализм очевидным образом свойствен и гегелевской диа­лектике. Факты малозначительны для нее, она не стремится уста­новить, что конкретно происходит в мире. Ее задача — обнаружить


87
общий план мировых событий, найти сущность мира вне его са­мого, пренебрегая конкретными событиями. Ученому, заботяще­муся о точности в передаче фактов, такая методология, ориенти­рующая не на конкретное изучение, а лишь на прослеживание на эмпирическом материале общих и не зависящих от него схем, ка­жется не просто неудовлетворительной, но преднамеренно и от­талкивающе ложной.
ДИЗЪЮНКТИВНЫЙ СИЛЛОГИЗМ, см.: Модус понендо толленс. Модус толлендо поненс.
ДИЗЪЮНКЦИЯ (от лат. disjunctio — разобщение, различение)
— логическая операция — аналог употребления союза «или» в обыч­ном языке, с помощью которой из двух или более исходных сужде­ний строится новое суждение. Так, из суждений «Он — способен» и «Он — прилежен» с помощью операции «или» можно получить новое суждение «Он способен или он прилежен» (1). Из суждений «Он совершил преступление», «Он не совершал преступления» с помощью «или» можно получить новое суждение «Он совершил преступление или он не совершал преступления» (2). Суждение (1) истинно в трех случаях: 1) когда какой-то человек оказывает­ся способным, но не прилежным; 2) когда этот человек оказыва­ется прилежным, но не способным; 3) когда установлено, что этот человек и способен, и прилежен. Оно является ложным, ког­да оказалось, что этот человек не является ни способным, ни прилежным. Суждения типа (1) в логике называют соединительно-разделительными. Суждение же (2) истинно лишь только в том случае, когда имеет место или только первая ситуация («Он со­вершил преступление»), или только вторая ситуация («Он не со­вершал преступления»). Суждение (2) не допускает, чтобы имели место обе ситуации. Суждения типа (2) носят название исключающе-разделительных или строго разделительных.
В рамках логики высказываний (раздел классической математи­ческой логики) различают слабую (нестрогую) Д. и силь­ную (строгую) Д. Если A и В - высказывания, а знак v - знак нестрогой Д., то высказывание «A U B» называют нестрогой Д. (читается: «A или В»). Если U — знак строгой Д., то высказывание «A U В» называют строгой Д. (читается: «либо А, либо В»). Выска­зывание «A U В» истинно в том и только в том случае, когда истинно по крайней мере одно из составляющих его высказыва­ний, и ложно, когда оба составляющие его высказывания ложны. Высказывание «A U В» истинно в том случае, когда истинно одно и только одно из составляющих его высказываний, и ложно в остальных случаях.


[88]
ДИЛЕММА (от греч. di(s) - дважды и lemma - предположение)
-в традиционной логике условно-разделительное умо­заключение, т. е. умозаключение, посылками которого явля­ются условные и разделительные суждения. Условно-разделитель­ные умозаключения вообще называются леммами; если разделительная посылка содержит только два члена, то такое умо­заключение называется дилеммой, если в нее входит три чле­на, то перед нами трилемма, и вообще полилемма, когда разделительная посылка содержит больше двух членов. Логика вы­деляет несколько разновидностей Д.
Простая конструктивная Д. имеет вид:
Если а, то b; если с то b.
______а или с.______
b.
Разделительная посылка утверждает основания условных по­сылок, вывод утверждает следствие этих посылок, напр.:
Если студент спит на лекциях, то он не усваивает логики. Если студент спит дома, то он не усваивает логики. Студент спит на лекциях или дома.
Следовательно, студент не усваивает логики.
Сложная конструктивная Д. отличается тем, что ус­ловные суждения посылок имеют разные следствия, поэтому, ут­верждая их основания в разделительной посылке, мы утверждаем оба следствия в заключении:
Если а, то b; если с то d.
______а или с.______
b или d.
Напр.:
Если пойдешь направо, коня потеряешь.
Если пойдешь налево, голову потеряешь. Но нужно идти направо или налево.
Следовательно, придется потерять коня или голову.
В средние века альтернативы леммы назывались «рогами». Ка­кую бы альтернативу вы ни выбрали, обе они равно приводят к неприятным следствиям и вы оказываетесь на «рогах» Д. Дест­руктивная Д. отличается тем, что разделительная посылка от­рицает следствия условных посылок, а в выводе мы отрицаем основания условных посылок.


[89]
Простая деструктивная Д. имеет вид:
Если а, то b; если а то с.
Не-b или не-с.
_____________
Не-a.
Пример:
Если мне выплатят зарплату, я устрою вечеринку с друзья­ми.
Если мне выплатят зарплату, то я приглашу свою девушку в театр.
Но я не устроил вечеринки и не ходил со своей девушкой в театр.
______________________________________________________
Следовательно, мне не выплатили зарплату.
Соответственно, сложная деструктивная Д. выглядит так:
Если а, то b; если с то d.
___He-b или не-d._____
Не-а или не-с.
Пример:
Если бы я был богат, я купил бы себе автомобиль.
Если бы я был министром, мне предоставили бы казенный автомобиль.
Но у меня нет ни личного, ни казенного автомобиля.
Следовательно, я не богат и я не министр.
ДИСКУРСИВНЫЙ (от лат. discursus — рассуждение, довод, аргу­мент)
- рассудочный, логический, противоположный инту­итивному, чувственному.
Д. познание как опирающееся на разум и рассуждение про­тивопоставляется интуитивному познанию, которое ос­новывается на непосредственном созерцании и интуиции. Д. зна­ние является результатом связного, последовательного, ясного рассуждения, в котором каждая последующая мысль вытекает из предыдущей и обусловливает последующую. Д. является, напр., знание, полученное в результате логического вывода из некото­рых общих принципов заключения, относящегося к конкретному случаю, или знание, возникающее путем обобщения некоторой совокупности фактов. Различие между Д. и интуитивным до неко­торой степени относительно. Всякая новая идея, мысль, представ­ление возникают на основе предшествующего знания, предпола­гают осознание и формулировку проблемы, задачи, требуют сознательного и целенаправленного размышления. После того как


[90]
новая идея возникла, требуется развитие ее следствий, установ­ление ее связей с другими идеями, ее проверка и т. п. Т. о., инту­итивный скачок мышления всегда включен в процессы Д. раз­мышления. Однако различие между Д. и интуитивным все же имеет определенный смысл, ибо новое знание часто не может быть по­лучено простым логическим рассуждением из имеющегося зна­ния и требует творческого акта, выходящего за рамки логических схем и правил.
ДИСКУССИЯ (от лат. discussio — рассмотрение, исследование)
— обсуждение к.-л. вопроса или группы связанных вопросов компе­тентными лицами с намерением достичь взаимоприемлемого ре­шения. Д. является разновидностью спора, близкой к полемике, и представляет собой серию утверждений, по очереди высказыва­емых участниками. Заявления последних должны относится к од­ному и тому же предмету или теме, что сообщает обсуждению необходимую связность. Сама тема Д. обычно формулируется до ее начала.
Д. отличается от полемики как своей направленностью, так и используемыми средствами. Если цель Д. — достижение опреде­ленной степени согласия ее участников относительно дискутиру­емого тезиса, то цель полемики — не само по себе согласие, а скорее победа над другой стороной, утверждение собственной точки зрения. В Д. всегда есть известные элементы компромисса. Тем не менее она, как правило, в большей мере, чем полемика, ориен­тирована на отыскание и утверждение истины. Используемые в Д. средства должны признаваться всеми, кто принимает в ней учас­тие. Употребление других средств недопустимо и ведет к прекра­щению Д. Употребляемые в полемике средства не обязательно дол­жны быть настолько нейтральными, чтобы с ними соглашались все участники. Каждая из полемизирующих сторон применяет те приемы, которые находит нужными для достижения победы.
Это различие целей и средств Д. и полемики лежит в основе терминологии: противоположная сторона в Д. именуется обычно «оппонентом», в полемике — «противником».
У каждого из участников Д. должны иметься определенные пред­ставления относительно обсуждаемого предмета. Однако итог Д. — не сумма имеющихся представлений, а нечто общее для разных представлений. Но это общее выступает уже не как чье-то частное мнение, а как более объективное суждение, поддерживаемое всеми участниками обсуждения или их большинством.
В обычных спорах элементы Д. и полемики чаще всего перепле­таются, и чистая Д. является столь же редкой, как и чистая полеми-


[91]
ка. Тем не менее, начиная спор, полезно уже в самом начале ре­шить, будет он Д. или же полемикой, и в дальнейшем придержи­ваться принятого решения. Выбор формы спора — Д. или полеми­ка — определяется конкретными обстоятельствами. Каждая из этих форм может быть полезной в свое время и на своем месте. И даже случающееся в ходе спора смешение Д. и полемики оказывается иногда полезным.
Д. - одна из важнейших форм коммуникации, плодотворный метод решения спорных вопросов и вместе с тем своеобразный способ познания. Она позволяет лучше понять то, что не является в полной мере ясным и не нашло еще убедительного обоснования. В Д. снимается момент субъективности, убеждения одного челове­ка или группы людей получают поддержку других и тем самым определенную обоснованность.
К Д. близка такая форма прояснения представлений, как ди­алог. Он также связан не только с сопоставлением, но и с опре­деленным противопоставлением точек зрения или позиций, хотя и не является спором, борьбой мнений.
ДИСТРИБУТИВНЫЕ И КОЛЛЕКТИВНЫЕ СВОЙСТВА. Д. с.
- об­щие свойства, принадлежащие каждому элементу множества (со­вокупности предметов, коллективу), которое они определяют. Так, свойство «быть русским поэтом» принадлежит каждому из эле­ментов множества «русские поэты» (Пушкину, Есенину и др.). Таковы же свойства «быть космонавтом», «быть птицей», «быть хи­мическим элементом» и т. п.
К. с. — свойства, которые не принадлежат каждому элементу некоторого множества, но принадлежат множеству в целом (со­вокупности, коллективу) как особому предмету. Так, в предложе­нии «Наше собрание было многочисленным» свойство «быть мно­гочисленным» является коллективным, т. к. относится не к каждому присутствовавшему на собрании, а ко всему коллективу в целом.
Процентные характеристики некоторых коллективов, множеств также представляют собой К. с. Так, в предложении «Мужчины на данном заводе составляют 40%» свойство «составлять 40%» относится не к каждому лицу. мужского пола, а характеризует коллектив завода в целом с точки зрения наличия в нем лиц мужского пола.
При статистических методах анализа частота исследуемого свой­ства в некоторой выборке из большого коллектива переносится на весь коллектив в целом и рассматривается как К. с. Так, если мы убедились, что в выборке в 1000 человек из взрослого мужско­го населения в большом городе 800 человек бреются электробрит-


[92]
вой, то свойство, «относительная частота» бреющихся электро­бритвой в выборке равна 0,8 и характеризует исследованную часть населения города в целом. При переносе этого свойства на все население данного города оно также остается коллективным.
ДИХОТОМИЯ (от греч, dicha и tome - рассечение на две части)
— деление объема понятия на две взаимоисключающие части, пол­ностью исчерпывающие объем делимого понятия. Основанием дихотомического деления объема понятия служит наличие или отсутствие видообразуюшего признака. Напр., объем понятия «человек» можно разделить на два взаимоисключающих класса: «мужчины» и «не-мужчины». Понятия «мужчины» и «не-мужчины» являются противоречащими друг другу, поэтому их объемы не пересекаются. От Д. следует отличать обычное деление, приводящее к тому же самому результату. Напр., объем понятия «человек» можно разделить по признаку пола на «мужчин» и «жен­щин». Но между понятиями «мужчина» и «женщина» нет логичес­кого противоречия, поэтому здесь нельзя говорить о дихотомичес­ком делении.
В объеме понятия не-а можно выделить вид b и вновь разделить понятие не-а на две части — b и не-b:
Полное дихотомическое деление получает такой вид:
Напр.:
кислота{органическая кислота
неорганическая кислота
{кислородсодержащая кислота
бескислородная кислота

Дихотомическое деление привлекательно своей простотой. Дей­ствительно, при Д. мы всегда имеем дело лишь с двумя классами, которые исчерпывают объем делимого понятия. Т. о., дихотомичес­кое деление всегда соразмерно; члены деления исключают друг друга, т. к. каждый объект делимого множества попадает только в один из классов A или не-А; деление проводится по одному основа­нию — наличие или отсутствие некоторого признака. Обозначив делимое понятие буквой A и выделив в его объеме некоторый вид, скажем, а, можно разделить объем A на две части — а и не-а:


[93]
Дихотомическое деление имеет недостаток: при делении объе­ма понятия на два противоречащих понятия каждый раз остается крайне неопределенной та его часть, к которой относится части­ца «не». Если разделить ученых на историков и не-историков, то вторая группа оказывается весьма неясной. Кроме того, если в начале дихотомического деления обычно довольно легко устано­вить наличие противоречащего понятия, то по мере удаления от первой пары понятий найти его становится все труднее. Д. обычно используется как вспомогательный прием при установлении клас­сификации.
ДОКАЗАТЕЛЬСТВО
— рассуждение, устанавливающее истин­ность к.-л. утверждения путем приведения других утверждений, истинность которых уже доказана. В Д. различаются тезис - ут­верждение, которое нужно доказать, и основание, или ар­гументы, — те утверждения, с помощью которых доказывается тезис. Напр., тезис «Платина проводит электрический ток» мож­но доказать с помощью следующих истинных утверждений: «Пла­тина — металл» и «Все металлы проводят электрический ток».
Понятие Д.— одно из центральных в логике и математике, но оно не имеет однозначного определения, применимого во всех случаях и в любых научных теориях.
Логика не претендует на полное раскрытие интуитивного, или «наивного», понятия Д. Д. образует довольно расплывчатую сово­купность, которую невозможно охватить одним универсальным определением. В логике принято говорить не о доказуемости вооб­ще, а о доказуемости в рамках данной конкретной системы или теории. При этом допускается существование разных понятий Д., относящихся к разным системам. Напр., Д. в интуиционистской логике и опирающейся на нее математике существенно отличает­ся от Д. в логике классической и основывающейся на ней математи­ке. В классическом Д. можно использовать, в частности, закон исклю­ченного третьего, закон (снятия) двойного отрицания и ряд других логических законов, отсутствующих в интуиционистской логике.
По способу проведения Д. делятся на два вида. При прямом Д. задача состоит в том, чтобы найти такие убедительные аргумен­ты, из которых логически вытекает тезис. Косвенное Д. устанавли­вает справедливость тезиса тем, что вскрывает ошибочность про­тивоположного ему допущения, антитезиса.
Задача Д. — исчерпывающе утвердить истинность тезиса. Этим оно отличается от других мыслительных процедур, призванных только частично поддержать тезис, придать ему большую или мень­шую убедительность.


[94]
Нередко в понятие Д. вкладывается более широкий смысл: оно понимается как любой способ обоснования истинности тезиса. Расширительное толкование Д. обычно используется в социальных науках и рассуждениях, непосредственно опирающихся на наблю­дения; в процессе обучения, где для подтверждения выдвинутого положения активно привлекаются эмпирический материал, ста­тистические данные, ссылки на типичные в определенном отно­шении явления и т. п.
Придание термину «Д.» широкого смысла не ведет к недоразу­мениям, если учитывается, что обобщение, переход от частных факторов к общим заключениям дает не достоверное, а лишь ве­роятное знание.
Определение Д. включает два центральных понятия логики: по­нятие истины и понятие логического следования. Оба эти понятия не являются в достаточной мере ясными, и, значит, определяемое через них понятие Д. также не может быть отнесено к ясным.
Многие утверждения не являются ни истинными, ни ложны­ми, лежат вне «категории истины». Оценки, нормы, советы, дек­ларации, клятвы, обещания и т. п. не описывают каких-то ситуа­ций, а указывают, какими они должны быть, в каком направлении их нужно преобразовать. От описаний требуется, чтобы они соот­ветствовали действительности и являлись истинными. Удачный совет, приказ и т. п. характеризуется как эффективный или целе­сообразный, но не как истинный. Высказывание «Вода кипит» истинно, если вода действительно кипит; команда же «Вскипяти­те воду!» может быть целесообразной, но не имеет отношения к истине. Очевидно, что, оперируя выражениями, не имеющими истинностного значения, можно и нужно быть и логичным и до­казательным. Встает, таким образом, вопрос о существенном рас­ширении понятия Д., определяемого в терминах истины. Им дол­жны охватываться не только описания, но и утверждения типа оценок или норм. Задача переопределения Д. пока не решена ни логикой оценок, ни деонтической (нормативной.) логикой. Это де­лает понятие Д. не вполне ясным по своему смыслу.
Не существует, далее, единого понятия логического следова­ния. Логических систем, претендующих на определение этого по­нятия, в принципе существует бесконечно много. Ни одно из име­ющихся в современной логике определений логического закона и логического следования не свободно от критики и от того, что принято называть «парадоксами логического следования».
Образцом Д., которому в той или иной мере стремятся следо­вать во всех науках, является математическое Д. Долгое время счи-


[95]
талось, что оно представляет собой ясный и бесспорный про­цесс. В нашем веке отношение к математическому Д. изменилось. Сами математики разбились на враждующие группировки, каж­дая из которых придерживается своего истолкования Д. Причи­ной этого послужило, прежде всего, изменение представления о лежащих в основе Д. логических принципах. Исчезла уверенность в их единственности и непогрешимости. Логицизм был убежден, что логики достаточно для обоснования всей математики; по мнению формалистов (Д. Гильберт и др.), одной лишь логики для этого недостаточно и логические аксиомы необходимо до­полнить собственно математическими; представители теорети­ко-множественного направления не особенно интересовались логическими принципами и не всегда указывали их в явном виде; интуиционисты из принципиальных соображений считали нуж­ным вообще не вдаваться в логику. Полемика по поводу матема­тического Д. показала, что нет критериев Д., не зависящих ни от времени, ни от того, что требуется доказать, ни от тех, кто ис­пользует критерий. Математическое Д. является парадигмой Д. вообще, но даже в математике Д. не является абсолютным и окон­чательным.
ДОКАЗАТЕЛЬСТВО КОНСТРУКТИВНОЕ, см.: Конструктивная логика.
ДОКАЗАТЕЛЬСТВО ОТ ПРОТИВНОГО, см.: Косвенное доказа­тельство.
ДОКАЗАТЕЛЬСТВО ПО СЛУЧАЯМ, или: Доказательство разбором случаев,
— логически правильное рассуждение, когда от нескольких условных высказываний (посылок), имею­щих одинаковое следствие, осуществляется переход к утвержде­нию этого следствия путем установления того, что по меньшей мере одно из оснований условных высказываний истинно. В наи­более простом случае посылками являются высказывания: «Если есть первое, то есть третье», «Если есть второе, то есть третье» и «Есть первое или есть второе», заключением — высказывание «Есть третье». Напр.: «Если будет дождь, мы пойдем в кино; если будет холодно, мы пойдем в кино; будет дождь или будет холодно; зна­чит, мы пойдем в кино».
Более сложные формы Д. п. с. включают не две, а большее число альтернатив. В случае, когда таких альтернатив три, на ос­нове посылок: «Если есть первое, то есть четвертое», «Если есть второе, есть четвертое», «Если есть третье, есть четвертое» и «Есть или первое, или второе, или третье» доказывается тезис «Есть четвертое».


[96]
Наиболее простая форма Д. п. с. в традиционной логике называет­ся простой конструктивной дилеммой; термин «Д. п. с.» обычен в математике. Более сложные формы Д. п. с., включающие более двух условных высказываний, иногда по традиции именуют-сятрилеммой, тетралеммой, полилеммой.
ДОКАЗУЕМОСТЬ, см.: Доказательство.
ДОПОЛНЕНИЕ К МНОЖЕСТВУ
- такое множество не-А, когда A + не-А = 1, где 1 обозначает некоторую предметную область (уни­версальный класс). Пусть A будет множеством млекопитающих, а областью нашего рассуждения будет множество позвоночных жи­вотных. Тогда дополнением к нему (не-А) будет множество «не­млекопитающие», которое включает множества: рыб, круглоротых, земноводных, пресмыкающихся и птиц. Сложив множество млекопитающих (A) с множеством не-млекопитающих (не-А), мы получим класс позвоночных, т. е. некоторый универсальный класс, обозначаемый 1.
ДОСТАТОЧНОГО ОСНОВАНИЯ ПРИНЦИП
- принцип, требу­ющий, чтобы в случае каждого утверждения указывались основа­ния, в силу которых оно принимается и считается истинным.
В логике традиционной это требование обоснованности знания, именуемое законом достаточного основания, включалось (наряду с непротиворечия законом, законом исключенного третьего, тожде­ства законом и др.) в число т. наз. «основных законов мышления» или «основных законов логики».
Последующее развитие логики показало, однако, что отнесе­ние закона достаточного основания к числу логических законов лишено оснований. Стало также ясно, что сама проблема «твер­дых оснований», затрагивавшаяся традиционной логикой в связи с данным законом, трактовалась поверхностно, без учета системно­го характера научного знания и динамики его развития.
Обоснование теоретического утверждения - сложный и про­тиворечивый процесс, не сводимый к построению отдельного умо­заключения или проведению одноактной эмпирической провер­ки. При этом из процесса обоснования не исключаются ни аксиомы, ни определения, ни суждения непосредственного опыта.
Обоснование теоретического утверждения слагается из целой серии процедур, касающихся не только самого утверждения, но и той теории, составным элементом которой оно является.
Из многообразных способов обоснования, обеспечивающих в конечном счете «достаточные основания» для принятия утвер­ждения, можно выделить следующие, наиболее часто использу­емые:


[97]
о Проверка выдвинутого положения на соответствие установив­шимся в науке законам, принципам, теориям и т. п. Утверждение должно находиться также в согласии с фактами, на базе которых и для объяснения которых оно предложено. Требование такой провер­ки не означает, конечно, что новое утверждение должно полностью согласовываться с тем, что считается в данный момент законом и фактом. Может случиться, что оно заставит иначе посмотреть на то, что принималось раньше, уточнить или даже отбросить что-то из старого знания.
> Анализ утверждения с точки зрения возможности эмпири­ческого подтверждения или опровержения. Если такой возможно­сти в принципе нет, не может быть и оснований для принятия утверждения: научные положения должны допускать принципи­альную возможность опровержения и предполагать определенные процедуры своего подтверждения.
> Исследование выдвинутого положения на приложимость его ко всему классу объектов, о которых идет речь, а также к род­ственным им явлениям.
> Анализ логических связей утверждения с ранее принятыми общими принципами: если утверждение логически следует из ус­тановленных положений, оно обоснованно и приемлемо в той же мере, что и эти положения.
> Если утверждение касается отдельного объекта или ограни­ченного круга объектов, оно может быть обосновано с помощью непосредственного наблюдения каждого объекта. Научные поло­жения касаются обычно неограниченных совокупностей вещей, поэтому сфера применения прямого наблюдения в этом случае является узкой.
> Выведение следствий из выдвинутого положения и эмпири­ческая проверка их. Это универсальный способ обоснования тео­ретических утверждений, но способ, никогда не дающий полной уверенности в истинности рассматриваемого положения. Подтвер­ждение следствий повышает вероятность утверждения, но не де­лает его достоверным.
о Внутренняя перестройка теории, элементом которой явля­ется обосновываемое положение. Может оказаться, что введение в теорию новых определений и соглашений, уточнение ее основ­ных принципов и области их действия, изменение иерархии таких принципов и т. д. приведет к включению анализируемого положе­ния в ядро теории. В этом случае оно опирается не только на под­тверждение своих следствий, но и на те явления, которые объяс­няет теория, на связи ее с другими научными теориями и т. д. Ни


[98]
одно утверждение не обосновывается изолированно, само по себе обоснование всегда носит системный характер. Включение утверж­дения в теоретическую систему, придающую устойчивость своим элементам, является одним из наиболее важных шагов в его обо­сновании.
> Совершенствование теории, укрепление ее эмпирической базы и прояснение ее общих, философских предпосылок одно­временно является вкладом в обоснование входящих в нее утвер­ждений. Среди способов прояснения теории особую роль играют выявление логических связей входящих в нее утверждений, ми­нимизация исходных допущений, аксиоматизация и, если это возможно, ее формализация.
ДОСТАТОЧНОЕ УСЛОВИЕ, см.: Условное высказывание.
ДОСТОВЕРНОСТЬ
- обоснованность, доказательность, бесспор­ность знания. Достоверное суждение - такое суждение, в котором высказывается твердо обоснованное знание, напр.: «Луна — спут­ник Земли», «Вода кипит при 100 °С» и т. п. Достоверные суждения разделяются на два вида: ассерторические, констатирующие реальное положение дел, и аподиктические, утверждающие необходимую связь явлений. Д. суждений обеспечивается эмпири­ческим подтверждением, экспериментальными данными, обще­ственной практикой.


З
ЗАБЛУЖДЕНИЕ
- гносеологическая оценка знания, выража­ющая его ограниченный характер. Марксистская гносеология и ме­тодология научного познания используют четыре истинностные оценки знания: истина — ложь, относительная исти­на - абсолютная и с т и н а. Первая пара понятий использу­ется при анализе структуры научного знания в некоторый период его развития при проверке, подтверждении и опро­вержении законов и теорий, при установлении их соответствия действительности. При таком подходе все научные утверждения и теории разделяются на два класса — истинные и ложные, соответ­ствующие действительности и не соответствующие ей. Когда мы переходим к рассмотрению развития знания, пара понятий «исти­на — ложь» уже не может служить для истинностной оценки. В самом деле, как квалифицировать экономическую теорию Д.Рикардо или астрономическую теорию Н. Коперника? Их нельзя на­звать истиной, ибо во многих своих частях они ошибочны, но эти теории трудно квалифицировать как просто ложные, ибо они были большим шагом вперед в развитии науки и внесли в нее много новых идей, получивших признание и подтверждение. Такие теории называются относительно истинными, т. е. неполными, неточными, исторически ограниченными истинами, на смену которым прихо­дят более точные истины.
Иногда под 3. понимают ложь, которая ошибочно принима­ется за истину. Такое понимание не вполне удовлетворительно, ибо приводит к абсурдному выводу, что вся история познания представляет собой доходящую почти до наших дней цепь оши­бок.


[100]
Категория 3. используется при диалектическом рассмотре­нии познания, когда она добавляется к понятиям относительной и абсолютной истины. Всякая истина объективно становится 3. после того, как обнаружился ее относительный характер. Геоцентрическая система вовсе не была 3. во времена Птолемея и в течение почти полутора тысяч лет после ее создания. Она соответствовала общим мировоззренческим представлениям эпохи, уровню развития обще­ственной практики и подтверждалась наблюдениями с использова­нием существовавших инструментов. Она была истиной. Как истина она играла прогрессивную роль и в практике, и в развитии астроно­мического знания. Только после того как выяснилась ее ограничен­ность, т. е. после победы гелиоцентрической системы, система Птоле­мея объективно превратилась в 3.
Момент, когда относительная истина превращается в 3., трудно зафиксировать. В течение пятидесяти лет после появления труда Коперника не было объективных оснований квалифицировать кон­цепцию Птолемея как 3. Лишь постепенно, после изобретения теле­скопа, появления ранее неизвестных данных, результатов Галилея и Кеплера, система Птолемея стала рассматриваться как 3.
3. не может играть прогрессивной роли в познании. Защищать 3. — значит выступать против истины. Конечно, всегда находились люди, которые в силу субъективной слепоты или социального интереса пытались ставить 3. на место истины. И всегда такие по­пытки лишь тормозили прогресс, но не могли остановить его.
ЗАКОН АССОЦИАТИВНОСТИ (от лат. associatio — соединение)
-общее имя для ряда логических законов, позволяющих по-разному группировать высказывания, соединяемые с помощью конъюнкции («и»), дизъюнкции («или») и др.
Операции сложения и умножения чисел в математике ассоци­ативны:
(а + b)+с=а + (b + с), (а·b)·с=а·(b·с).
Ассоциативностью обладают также логическое сложение (дизъ­юнкция) и логическое умножение (конъюнкция). Символически соответствующие законы представляются так (р, q, r — некоторые высказывания, v - дизъюнкция, & - конъюнкция, = [є] - эквива­лентность, «если и только если»):
(pvq)vr = pv(qvr), (p&q)&r = p&(q&r).
В силу З.а. в формулах, представляющих конъюнкцию более чем двух высказываний или их дизъюнкцию, можно опускать скобки.


[101]
ЗАКОН ГИПОТЕТИЧЕСКОГО СИЛЛОГИЗМА
- закон логики, характеризующий импликацию («если, то»): если первое влечет вто­рое, то если второе влечет третье, то первое влечет третье. Напр.: «Если с ростом знаний о человеке возрастает возможность защитить его от болезней, то если с ростом этой возможности растет средняя продолжительность человеческой жизни, то с ростом знаний о че­ловеке растет средняя продолжительность его жизни». Иначе говоря, если условием истинности первого является истинность второго, то если условием истинности второго является истинность третьего, то истинность последнего есть также условие истинности первого.
С использованием символики логической (р, q, r — некоторые высказывания; a — импликация, «если, то») данный закон пред­ставляется так:
(р a q) -> ((qa r) -> (р a r)),
если (если р, то q), то (если (если q, то r), то (если р, то r)).
3. г. с. близок по своей структуре транзитивности закону, назы­ваемому также конъюнктивно-гипотетическим сил­логизмом: если дело обстоит так, что если первое, то второе, и если второе, то третье, то если первое, то третье.
Эти законы называются гипотетическими (условными, имшшкативными) силлогизмами по сходству их с традици­онными логическими схемами, известными еще с античности и именуемыми силлогизмами. Схемы подобных умозаключений ведут от двух посылок определенного вида к выводу, также имеющему некоторый определенный (хотя, может быть, и иной) вид.
ЗАКОН ДВОЙНОГО ОТРИЦАНИЯ
- закон логики, позволяющий отбрасывать двойное отрицание. Его можно сформулировать так: от­рицание отрицания дает утверждение, или: повторенное дважды отрицание ведет к утверждению. Напр.: «Если неверно, что Вселен­ная не является бесконечной, то она бесконечна».
3. д. о. был известен еще в античности. В частности, древнегреческие философы Зенон Элейский и Горгий излагали его так: если из отри­цания к.-л. высказывания следует противоречие, то имеет место двой­ное отрицание исходного высказывания, т. е. оно само.
С применением символики логической (р - некоторое высказы­вание; a - условная связь, «если, то»; ˜ - отрицание, «неверно, что») закон записывается так:
˜ ˜ p a p, если неверно, что неверно р, то верно р.
Другой закон логики, говорящий о возможности не снимать, а вводить два отрицания, принято называть обратным 3. д. о.: ут-


[102]
верждение влечет свое двойное отрицание. Напр.: «Если Шекспир писал сонеты, то неверно, что он не писал сонеты». Символически:
pa ˜ ˜p,
если р, то неверно, что не-р.
Объединение этих законов дает т. наз. полный 3. д. о.: двойное отрицание равносильно утверждению. Напр.: «Планеты не непод­вижны в том и только том случае, если они движутся». Символи­чески (= — эквивалентность, «если и только если»):
˜ ˜Р = Р, неверно, что не-р, если и только если верно р.
ЗАКОН ДЕ МОРГАНА
- общее название логических законов, связывающих с помощью отрицания конъюнкцию («и») и дизъюн­кцию («или»). Названы именем англ. логика XIX в. А. де Моргана.
Один из этих законов можно выразить так: отрицание конъюнк­ции эквивалентно дизъюнкции отрицаний. Напр.: «Неверно, что завтра будет холодно и завтра будет дождливо, тогда и только тогда, когда завтра не будет холодно или завтра не будет дождливо».
Другой закон: отрицание дизъюнкции эквивалентно конъюнк­ции отрицаний. Напр.: «Неверно, что ученик знает арифметику или знает геометрию, тогда и только тогда, когда он не знает ни арифметики, ни геометрии».
В терминах символики логической (р, q — некоторые высказыва­ния; & - конъюнкция; v - дизъюнкция; ˜ — отрицание, «невер­но, что»; = — эквивалентность, «если и только если») данные два закона представляются формулами:
˜ (p & q) = (˜ p v˜q), неверно, что р и q, если и только если неверно р и неверно q;
˜ (p v q) = (˜ p & ˜ q), неверно, что или р, или q, если и только если неверно р и неверно q.
На основе этих законов, используя отрицание, связку «и» мож­но определить через «или», и наоборот: «р и q» означает «Невер­но, что не-р или не-q», «р или q» означает «Неверно, что не-р и не-q».
Напр., «Идет дождь и идет снег» означает «Неверно, что нет дождя или нет снега»; «Сегодня холодно или сыро» означает «Не­верно, что сегодня не холодно и не сыро».
ЗАКОН ДИСТРИБУТИВНОСТИ (от англ. distribution - распреде­ление, размещение)
- общее название группы логических законов сходной структуры. Эти законы позволяют распределить одну ло­гическую связь относительно другой.


[103]
Полный 3. д. конъюнкции относительно дизъюнкции с использо­ванием символики логической формулируется так (р, q, r — некото­рые высказывания; & - конъюнкция, «и»; v - дизъюнкция, «или»; = — эквивалентность, «если и только если»):
p&(qvr) = (p&q)v(p&r),
первое и (второе или третье), если и только если (первое и вто­рое) или (первое и третье). Напр.: «Сегодня идет дождь и завтра ясно или послезавтра ясно в том и только в том случае, когда сегодня идет дождь и завтра ясно или сегодня идет дождь и после­завтра ясно».
Полный 3. д. дизъюнкции относительно конъюнкции:
pv(q&r) = (pvq)&(pvr),
первое или (второе и третье), если и только если (первое или вто­рое) и (первое или тре'тье). Напр.: «Завтра будет солнечно или послезавтра будет мороз и снег тогда и только тогда, когда завтра будет солнечно или послезавтра будет мороз и завтра будет сол­нечно или послезавтра будет снег».
Закон самодистрибутивности импликации (->, «если, то») дает возможность распределять импликацию по импликации:
(p->(q->r))->((p->q)->(p->r)),
если (если первое, то (если второе, то третье)), то (если (если первое, то второе), то (если первое, то третье)). Этот закон верен для импликации материальной, но не имеет места для целого ряда иных импликаций, вводимых в современной логике.
ЗАКОН ДУНСА СКОТА
- закон логики классической, характери­зующий логическое противоречие и импликацию материальную. За­кон можно передать так: ложное высказывание влечет (имплици­рует) любое высказывание. Напр.: «Если дважды два не равно четырем, то, если дважды два четыре, вся математика ничего не значит».
Первое упоминание закона принадлежит средневековому фило­софу и логику Дунсу Скоту, прозванному «тонким доктором» схо­ластики. Амер. философ и логик К. И. Льюис (1883-1964), поло­живший начало исследованию модальной логики, отнес данный закон к парадоксальным положениям классической логики. В пред­ложенной самим К. И. Льюисом новой теории логического следо­вания — т. наз. теории строгой импликации — 3. Д. С. не­доказуем. Но в этой теории есть собственный аналогичный парадокс, говорящий уже о логической невозможности: логически невоз-



[104]
можное высказывание влечет любое высказывание. Напр.: «Если снег бел и вместе с тем не бел, трава бывает только черной».
С использованием символики логической (р, q — некоторые выска­зывания; ˜ - отрицание, «неверно, что»; —> импликация, «если, то») 3. Д. С. выражается формулой:
˜p->(p->q),
если неверно, что p, то если р, то q; или эквивалентной ей в класси­ческой логике формулой:
(p&˜p)->q, если р и не-р, то q.
Если принимаются высказывание и его отрицание, то, исполь­зуя данные формулы в качестве схем вывода, можно получить лю­бое высказывание. В подобного рода переходах есть элемент пара­доксальности. Особенно заметным он становится, когда в качестве следствия берется явно ложное и совершенно не связанное с по-сылками высказывание. Напр.: «Если Солнце и звезда, и не звезда, то Луна сделана из зеленого сыра».
3. Д. С. есть своего рода предостережение против принятия лож­ного высказывания: введение в научную теорию такого высказыва­ния ведет к тому, что в ней становится доказуемым все что угодно и она перестает выполнять свои функции. Однако предостережение не настолько очевидно, чтобы стать одним из правил логического следования. Не все современные описания следования принимают 3. Д. С. в качестве правомерного способа рассуждения. Уже построены теории логических связей, в которых этот и подобные ему способы рассуждения считаются недопустимыми.
Если 3. Д. С. не принимается, то появление противоречия в сис­теме утверждений становится допустимым. Такое более «терпи­мое» отношение к противоречию лежит в основе логических тео­рий, получивших название паранепротиворечивой логики.
ЗАКОН ИМПОРТАЦИИ, см.: Закон экспортации — импортации.
ЗАКОН ИСКЛЮЧЕННОГО ТРЕТЬЕГО
- логический закон, со­гласно которому истинно или само высказывание, или его отри­цание. Закон устанавливает связь между противоречащими друг другу высказываниями: одно из таких высказываний истинно. Напр.: «Аристотель умер в 322 г. до н. э. или он не умер в этом году». «Завтра будет морское сражение или завтра не будет морского сражения» и т. п.
Само название закона выражает его смысл: дело обстоит так, как описывается в рассматриваемом высказывании, или так, как говорит его отрицание; третьего варианта нет («третьего не дано»).


[105]
Символически 3. и. т. представляется формулой (р — некоторое высказывание; v — дизъюнкция, «или»; ˜ - отрицание, «неверно, что»):
pv˜p, р или не-р.
3. и. т. был известен еще до Аристотеля. Однако он первым сфор­мулировал этот закон, подчеркнув его важность для понимания мышления: «Не может быть ничего промежуточного между двумя членами противоречия, а относительно чего-то одного необходи­мо что бы то ни было одно либо утверждать, либо отрицать».
От Аристотеля идет традиция давать 3. и. т. разные интерпрета­ции.
1. З.и.т. истолковывается как принцип логики, говорящий о выс­казываниях и их истинности: или высказывание, или его отрица­ние должно быть истинным.
2. Закон понимается как утверждение об устройстве самого мира: всякий объект или реально существует, или не существует.
3. Закон звучит как принцип методологии научного познания: исследование каждого объекта должно вестись до тех пор и быть настолько полным, чтобы относительно каждого утверждения об этом объекте можно было решить, истинно оно или нет.
Нередко полагают, что эти три истолкования - логическое, онтологическое и методологическое — различаются между собой только словесно. На самом деле это не так. Устройство мира, зани­мающее онтологию, и своеобразие научного исследования, интере­сующее методологию, - темы эмпирического, опытного изучения. Получаемые с его помощью положения являются эмпирическими истинами. Принципы же логики не вытекают из онтологических соображений и представляют собой не эмпирические, а логически необходимые истины.
Аристотель сомневался в приложимости 3. и. т. к высказыва­ниям о будущих событиях: в настоящий момент наступление не­которых из них еще не предопределено. Нет причины ни для того, чтобы они произошли, ни для того, чтобы они не случились. «Че­рез пять лет в этот же день будет идти дождь» — это высказыва­ние в настоящий момент ни истинно, ни ложно. Таким же явля­ется его отрицание. Сейчас нет причины ни для того, чтобы через пять лет пошел дождь, ни для того, чтобы его не было. Но 3. и. т. утверждает, что или само высказывание, или его отрицание ис­тинно. Значит, заключал Аристотель, закон следует ограничить высказываниями о прошлом и настоящем и не прилагать его к высказываниям о будущем.


[106]
В XX в. размышления Аристотеля над З.и.т. натолкнули на мысль о возможности принципиально нового направления в логике. Была создана многозначная логика.
Последовательная критика 3. и. т. берет начало от голландского математика и логика Л. Брауэра. Критика Брауэра положила нача­ло новому направлению в формальной логике - интуиционист­ской логике.
Одной из предпосылок особого внимания к 3. и. т. является его широкая применимость в самых разных областях рассуждений. Че­ловек говорит прозой или не говорит прозой, кто-то рыдает или не рыдает, дождь идет или не идет и т. п. - других вариантов не существует. Это известно каждому, что показывает, насколько уко­ренен 3. и. т. в нашем мышлении и с каким автоматизмом осуще­ствляется его применение в рассуждениях.
ЗАКОН КЛАВИЯ
— логический закон, характеризующий связь импликации («если, то») и отрицания. Его можно передать так: если из отрицания некоторого высказывания вытекает само это высказывание, то оно является истинным. Или короче: высказы­вание, вытекающее из своего собственного отрицания, истинно. Иначе говоря: если необходимым условием ложности некоторого высказывания является его истинность, то это высказывание ис­тинно. Напр., если условием того, чтобы машина не работала, является ее работа, то машина работает.
Закон назван именем Клавия — ученого иезуита, жившего в XVI в., одного из создателей григорианского календаря. Клавий обратил внимание на этот закон в своем комментарии к «Нача­лам» Евклида. Одну из своих теорем Евклид доказал из допуще­ния, что она является ложной.
С использованием символики логической (р — некоторое выска­зывание; -> - условная связь, «если, то»; ˜ - отрицание, «невер­но, что») 3. К. представляется формулой:
(˜р->р)->р,
если не-р имплицирует р, то верно р.
3. К. лежит в основе рекомендации, касающейся доказательства: если хочешь доказать А, выводи A из допущения, что верным яв­ляется не-А. Напр., нужно доказать утверждение «Трапеция имеет четыре стороны». Отрицание этого утверждения: «Неверно, что трапеция имеет четыре стороны». Если из этого отрицания удает­ся вывести утверждение, то последнее будет истинно.
Эту схему рассуждения использовал однажды древнегреческий философ Демокрит в споре с софистом Протагором, который ут-


[107]
верждал: «Истинно все то, что к.-л. приходит в голову». На это Демокрит ответил, что из положения «Каждое высказывание ис­тинно» вытекает истинность и его отрицания: «Не все высказыва­ния истинны». И, значит, это отрицание, а не положение Прота-гора на самом деле истинно.
3. К. является одним из случаев общей схемы косвенного доказа­тельства: из отрицания утверждения выводится само это утвер­ждение, вместе с отрицанием оно составляет логическое проти­воречие; это означает, что отрицание ложно, а верным является само утверждение.
К 3. К. близок по своей структуре другой логический закон, от­вечающий этой же общей схеме: если из утверждения вытекает его отрицание, то последнее истинно. Напр., если условием того, что поезд прибудет вовремя, будет его опоздание, то поезд опоздает. Иначе говоря: если необходимым условием истинности некоторого утвер­ждения является его ложность, то утверждение ложно.
Символически:
(p->˜p)->˜p,
если р имплицирует не-р, то верно не-р. Данный закон представ­ляет собой схему рассуждения, идущего от некоторого утвержде­ния к его отрицанию. Можно сказать, что он в некотором смысле слабее, чем З.К., представляющий рассуждение, идущее от отри­цания утверждения к самому утверждению. В частности, оба эти закона имеют место в логике классической, но 3. К. не принимается в интуиционистской логике.
ЗАКОН КОММУТАТИВНОСТИ (от лат. commutatio - изменение, перемена)
— общее название логических законов, позволяющих менять местами высказывания, связанные конъюнкцией («и»), дизъ­юнкцией («или»), эквивалентностью («если и только если») и др. Эти законы аналогичны алгебраическим законам коммутативно­сти для умножения, сложения и др., по которым результат умно­жения не зависит от порядка множителей, сложения - от поряд­ка слагаемых и т. д.
Символически 3. к. для конъюнкции и дизъюнкции записываются так (р, q — некоторые высказывания, & — конъюнкция, v — дизъ­юнкция, = — эквивалентность):
(p&q) = (q&p), р и q тогда и только тогда, когда q и р;
(pvq) = (qvp), р или q, если и только если q или р.


<< Пред. стр.

страница 4
(всего 13)

ОГЛАВЛЕНИЕ

След. стр. >>

Copyright © Design by: Sunlight webdesign