LINEBURG


<< Пред. стр.

страница 10
(всего 13)

ОГЛАВЛЕНИЕ

След. стр. >>

(4) Для П. с. характерно, что с изменением интенсивности или силы действия причины соответствующим образом меняется и интенсивность следствия.
(5) Причинность, наконец, всеобща: нет и не может быть бес­причинных явлений; все в мире возникает только в результате дей­ствия определенных причин. Это - т. наз. закон, или принцип, при­чинности, требующий естественного объяснения явлений приро­ды и общества и исключающий их объяснение с помощью каких-то сверхъестественных сил.
Логические связи утверждений о П. с. исследуются логикой при­чинности, возникшей в 50-е годы этого века.
ПРИЧИННОСТИ ЛОГИКА
- раздел современной логики, зани­мающийся исследованием структуры и логических отношений высказываний о причинных связях явлений (каузальных высказы-


[287]
ваний). Понятие причинности является одним из центральных как в науке, так и в философии науки. Причинная связь не является логическим отношением. Но то, что причинность несводима к логи­ке, не означает, что проблема причинности не имеет никакого ло­гического содержания и не может быть проанализирована с помо­щью логики. Задача логического анализа причинности заключается в систематизации тех правильных схем рассуждений, посылками или заключениями которых служат каузальные высказывания. В этом плане П. л. ничем не отличается, скажем, от логики времени или логики знания, целью которых является построение искусственных (формализованных) языков, позволяющих с большей ясностью и эффективностью рассуждать о времени или знании.
В П. л. связь причины и следствия представляется особым услов­ным высказыванием — каузальной импликацией. Последняя иногда принимается в качестве исходного, неопределяемого явным образом понятия. Смысл ее задается множеством аксиом. Чаще, од­нако, такая импликация определяется через другие, более ясные или более фундаментальные понятия. В их числе понятие онтоло­гической (каузальной, или фактической) необходимости, по­нятие вероятности и др.
Необходимость логическая присуща законам логики, онтологи­ческая необходимость характеризует закономерности природы и, в частности, причинные связи. Выражение «A есть причина В» («А каузально имплицирует B») можно определить как «онтологически необходимо, что если A, то В», отличая тем самым простую услов­ную связь от каузальной импликации.
Через вероятность причинная связь определялась так: событие A есть причина события В, только если вероятность события A больше нуля, оно происходит раньше В и вероятность наступления В при наличии A выше, чем просто вероятность В.
Понятие причинной связи определялось и с помощью понятия закона природы: A каузально влечет В, только если из A не вытека­ет В, но из А, взятого вместе с множеством законов природы, логически следует В. Смысл этого определения прост: причинная связь не является логической, следствие вытекает из причины не в силу законов логики, а на основании законов природы.
Для причинной связи верны, в частности, утверждения:
>> ничто не является причиной самого себя;
>> если одно событие есть причина второго, то второе не является причиной первого;
>> одно и то же событие не может быть одновременно как при­чиной наличия какого-то события, так и причиной его отсутствия;
>> нет причины для наступления противоречивого события и т. п.



[288]
Слово «причина» употребляется в нескольких смыслах. Наиболее сильный из них предполагает, что имеющее причину не может не быть, т. е. не может быть ни отменено, ни изменено никакими собы­тиями или действиями. Наряду с этим понятием полной, или необходимой, причины существует также более слабое понятие частичной, или неполной, причины. Для полной причины выполняется условие: «Если событие А каузально имплицирует со­бытие В, то А вместе с любым событием С также каузально импли­цирует B». Для неполной причины верно, что в случае всяких собы­тий а и В, если А есть частичная причина В, то существует такое событие С, что А вместе с С является полной причиной В, и вместе с тем неверно, что А без С есть полная причина В. Иначе говоря, полная причина всегда, или в любых условиях, вызывает свое след­ствие, в то время как частичная причина только способствует на­ступлению своего следствия, и это следствие реализуется лишь в случае объединения частичной причины с иными условиями.
П.л. строится так, чтобы в ее рамках могло быть получено описа­ние и полных, и неполных причин. П. л. находит приложения при обсуждении понятий закона природы, онтологической необходимо­сти, детерминизма и др.
ПРОБЛЕМА (от греч. problema — преграда, трудность, задача)
— вопрос или целостный комплекс вопросов, возникший в ходе по­знания. Не каждая П., однако, сразу же приобретает вид явного вопроса, так же как не всякое исследование начинается с выдви­жения П. и кончается ее решением. Иногда П. формулируется одно­временно с ее решением, случается даже, что она осознается только через некоторое время после ее решения. Зачастую поиск П. сам вырастает в особую П.
В широком смысле проблемная ситуация — это всякая ситуация, теоретическая или практическая, в которой нет соответ­ствующего обстоятельствам решения и которая заставляет поэтому остановиться и задуматься.
От П. принято отличать псевдопроблемы — вопросы, обла­дающие лишь кажущейся значимостью и не допускающие сколь-нибудь обоснованного ответа. Между П. и псевдопроблемами нет, однако, четкой границы.
Из многочисленных факторов, оказывающих влияние на способ постановки П., особое значение имеют, во-первых, характер мыш­ления той эпохи, в которую формируется и формулируется П., и, во-вторых, уровень знания о тех объектах, которых касается возник­шая П. Каждой исторической эпохе свойственны свои характерные формы проблемных ситуаций; в древности П. ставились иначе, чем, скажем, в средние века или в современной науке. В хорошо проверен-


[289]
ной и устоявшейся научной теории проблемные ситуации осозна­ются по-другому, чем в теории, которая только складывается и не имеет еще твердых оснований.
Основы логико-семантического истолкования П. были заложены в работах математика А. Н. Колмогорова (1903-1985), С. К. Клини и др. Согласно Колмогорову, возможна логика, систематизирующая схе­мы решения задач. Понятия «задача» и «решение задачи» принима­ются в качестве исходных; логические задачи истолковываются как операции, позволяющие получать новые задачи из уже имеющихся задач. (А и В) означает задачу: решить обе задачи А и В; (А или В) — решить хотя бы одну из задач A, В; (если А, то В) означает задачу: свести задачу В к задаче A; (не-А) означает задачу: предположив, что дано решение A, прийти к противоречию.
Одной из форм П. является неразрешимая П.: ее «решени­ем» выступает доказательство ее неразрешимости. Напр., разрешения П. для логики предикатов первого порядка неразрешима: не суще­ствует эффективной процедуры, которая позволяла бы для всякой формулы определить, является она теоремой или нет. Доказательство этого факта, данное в 1936 г. амер. логиком А. Чёрчем (р. 1903), дало первый пример неразрешимой П.
ПРОПОЗИЦИОНАЛЬНАЯ СВЯЗКА
- операция, позволяющая из данных суждений (высказываний) строить новые суждения (выс­казывания). В логике высказываний высказывания (формулы) рас­сматриваются лишь с точки зрения их истинности или ложности. Если A и В - к.-л. формулы (простые, элементарные или сложные, построенные из элементарных), то из них с помощью П. с. могут строиться новые формулы: А & В, AvB, A-> B, А = В, если А - формула, то ˜А - также формула. Символы «&», «v», «->», «=», «˜» выража­ют П. с., которые определяются на семантическом, содержательно-алгоритмическом уровне при помощи таблиц истинности. Эти П. с. соответственно называются: конъюнкцией, дизъюнкцией, импликаци­ей, эквиваленцией, отрицанием. Смысл П. с. в русском языке переда­ется при помощи следующих выражений:
конъюнкция - с помощью союзов «и», «а», «но», «хотя» и др.;
дизъюнкция (нестрогая) — с помощью выражений: «или», «или, или оба»;
импликация — с помощью выражений «если..., то», «влечет», «сле­дует» (ср.: «Если А, то В», «А влечет В», «Из А следует В»);
эквиваленция - с помощью выражений «эквивалентно», «равно­сильно», «тогда и только тогда», «если и только если»;
отрицание — с помощью выражений «не», «неверно, что».
ПРОПОЗИЦИОНАЛЬНАЯ ФУНКЦИЯ
- функция, область значе­ний которой составляют высказывания, обладающие определенным



[290]
истинностным значением. По своей структуре П. ф. сходна с грамма­тическим предложением, но отличается от последнего наличием пе­ременных, которые пробегают какое-то множество объектов; П. ф. ставит в соответствие этим объектам высказывания.
Примером П. ф. может служить выражение «х есть простое чис­ло». Имея форму грамматического предложения, оно не является высказыванием: о нем нельзя сказать, что оно истинно или лож­но, его нельзя доказать или опровергнуть. Из этого выражения в результате замены переменной х некоторым числом получается выс­казывание. Если вместо переменной подставить число 11, получит­ся истинное высказывание, если 8 — ложное. Несколько более сложным выражением, содержащим переменные и превращающимся при замене этих переменных постоянными в высказывание, является формула x + у = 10.
Роль переменных в П. ф. можно сравнить с ролью пробелов, оставляемых в опросном бланке: такой бланк приобретает опреде­ленное содержание только после заполнения пробелов. Точно так же П.ф. превращается в высказывание лишь после того, как перемен­ные заменены в ней постоянными.
В обычном языке переменные не встречаются, но есть конструк­ции, напоминающие их, напр. «кто-то» и «какой-то» служат имена­ми неопределенных людей. Из выражения «Кто-то первым достиг Южного полюса» получается истинное высказывание, если подста­вить имя «Амундсен», и ложное при подстановке имени «Скотт». Употребление переменных не столь существенно отличается, таким образом, от некоторых конструкций обычного языка.
Из П. ф. высказывание может быть получено не только путем замены переменных постоянными, но и с помощью кванторов. Так, из выражения «х есть отец у», используя кванторы «все» и «некото­рый» («существует»), можно получить истинное высказывание «Для всякого у существует такой х, что есть отец у» («Всякий человек имеет отца») или ложное высказывание «Существует х, являющий­ся отцом всякого у» («Есть человек, являющийся отцом каждого»).
Термин «П. ф.» введен в логику англ. философом и логиком Б. Расселом (1872-1970).
ПРОТИВОПОЛОЖНОСТЬ ЛОГИЧЕСКАЯ
– вид отношения между противоположными понятиями или суждениями в традиционной логике. В отношении противоположности находятся такие несовмес­тимые понятия, объемы которых включаются в объем более широко­го, родового понятия, но не исчерпывают его полностью, напр. «белый — черный», «сладкий — горький», «высокий - низкий» и т. п. Если последнюю пару понятий отнести к людям, то класс «люди»


[291]
можно разбить на три части: «высокие» — «среднего роста» — «низ­кие». Противоположные понятия «высокий» — «низкий» займут наи­более удаленные друг от друга части объема родового понятия, но не покроют его целиком.
В отношении противоположности находятся общеутверди­тельные и общеотрицательные суждения, говорящие об одном и том же классе предметов и об одном и том же свойстве, например: «Всякий человек добр» и «Ни один человек не добр». Такие суждения вместе не могут быть истинными, однако они оба могут оказаться ложными (как это имеет место в приведенном примере).
ПРОТИВОПОСТАВЛЕНИЕ ПРЕДИКАТУ
- вид непосредственно­го умозаключения, в котором субъектом вывода является понятие, противоречащее предикату посылки, предикатом является субъект посылки, а связка изменяется на противоположную символически:
S есть Р.
не-Р не есть S.

П. п. представляет собой соединение превращения с обра­щением, поэтому при его выполнении следует сначала произвес­ти превращение посылки, а затем обратить получившееся суждение: превращаем «S есть Р», получаем «S не есть не-Р», затем обращаем последнее суждение и приходим к выводу «не-Р не есть S». Затруд­нения здесь носят чисто грамматический характер. Чтобы избежать их, следует формулировать связку в явном виде и фиксировать отрицания. Из общеутвердительного суждения следует общеотрица­тельный вывод; из общеотрицательного суждения следует частноутвердительный вывод; из частноотрицательного суждения следует частноутвердительный вывод; из частноутвердительного суждения нельзя получить вывод путем П. п.
ПРОТИВОРЕЧИЕ
- два высказывания, из которых одно являет­ся отрицанием другого. Напр.: «Латунь - химический элемент» и «Латунь не является химическим элементом», «2 - простое число» и «2 не является простым числом». В одном из противоречащих выс­казываний что-то утверждается, в другом это же самое отрицается, причем утверждение и отрицание касаются одного и того же объек­та, взятого в одно и то же время и рассматриваемого в одном и том же отношении.
П. является одним из центральных понятий логики. Поскольку слово «П.» многозначно, пару отрицающих друг друга высказыва­ний называют иногда «логическим П.» или абсурдом.
П. недопустимо в строгом рассуждении, когда оно смешивает истину с ложью. Но у П. в обычном языке много разных задач. Оно


[292]
может выступать в качестве основы сюжета, быть средством дости­жения особой художественной выразительности, комического эф­фекта и т. д. Реальное мышление — и тем более художественное мышление — не сводится к одной логичности. В нем важны ясность и неясность, доказательность и зыбкость, точное определение и чувственный образ и т. д., может оказаться нужным даже П., если оно стоит на своем месте.
[293]

Р
РАВЕНСТВО
— отношение между знаковыми выражениями, обо­значающими один и тот же объект, когда все, что можно высказать на языке соответствующей теории об одном из них, можно выска­зать и о другом, и наоборот, и при этом получать истинные выска­зывания. Обозначаемые объекты могут быть построены различным способом, напр., один объект может быть представлен как «3•5», а другой как «20-5», но между ними может быть поставлен знак Р.
Отношение Р позволяет заменять одни и те же объекты, постро­енные различным образом, друг на друга в различных контекстах (правило подстановочности). Выражения (формулы), содержащие пре­дикат Р., могут содержать переменные, или параметры. Если такая формула является истинной при всех значениях переменных (пара­метров), то отношение Р называют тождеством. Если же она явля­ется истинной лишь при некоторых значениях, то ее называют урав­нением. Отношение Р обладает свойствами симметричности, тран­зитивности и рефлексивности.
РАВНОЗНАЧНОСТЬ (равносильность, эквивалентность)
- от­ношение между высказываниями или формулами, когда они при­нимают одни и те же истинностные значения. Напр., при любых значениях элементарных высказываний формулы (A v B) и (B v A), (A v (A & В)) и A принимают одни и те же значения, т. е. если одна из них истинна, то и другая истинна, если одна из них ложна, то и другая также ложна. Если два высказывания A и В равнозначны, то формулы А -> В и B -> А будут тождественно истинными.
РАВНООБЪЕМНОСТЬ
- отношение между понятиями, объемы которых совпадают. Напр., понятия «луна» и «естественный спутник Земли» совпадают по своему объему, в который входит только один



[294]
предмет; понятия «человек» и «разумное существо, владеющее чле­нораздельной речью» равны по своему объему, т. к. обозначают один и тот же класс — людей.
РАЗДЕЛИТЕЛЬНОЕ СУЖДЕНИЕ
- дизъюнктивное (от лат. disjunctio — разобщаю) сложное суждение, образованное из двух или большего числа суждений с помощью логической связки «или». Общая форма Р. с. имеет вид А1 v A2 v, ..., v An, где Аn — суждение (член дизъюнкции, альтернатива), a v — знак дизъюнкции. Суще­ствуют два вида Р. с.: строго разделительные и нестрого раздели­тельные. В строго разделительных суждениях связка «или», «либо» употребляется в строго разделительном смысле (см.: Дизъюнкция), т. е. когда члены дизъюнкции (альтернативы) в двучленном сужде­нии A1 v A2 несовместимы (одно из них является истинным, а дру­гое — ложным). Таково суждение: «Этот человек является виновным (A1) либо этот человек не является виновным (А2)». Естественно, что данный человек не может быть одновременно виновным и невиновным, имеет место лишь одна из альтернатив. В нестрого разделительных суждениях (см.: Дизъюнкция) альтернативы не яв­ляются несовместимыми. Таково суждение «Этот ученик является способным или он является прилежным». В этом суждении не ис­ключается, что ученик может быть одновременно способным и прилежным.
Р. с. в обычном языке формулируются чаще всего в сокращенной форме и имеют, напр., вид: «S есть Р1 или P2 или «Р1 или p2 принадлежит S». Так, суждение «Данный треугольник прямоуголь­ный или непрямоугольный» означает Р. с. «Данный треугольник пря­моугольный или данный треугольник непрямоугольный» Связка «либо» вместо связки «или» используется обычно в строго раздели­тельных суждениях.
РАЗДЕЛИТЕЛЬНО-КАТЕГОРИЧЕСКОЕ УМОЗАКЛЮЧЕНИЕ
-умозаключение, в котором одна из посылок — разделительное суж­дение, а другая — категорическое. Р.-к. у. имеет два модуса: 1) модус утверждающе-отрицающий; 2) модус отрицающе-утверждающий. Простейшая форма модуса (1) имеет вид: S есть Р1 или p2 (первая посылка); S есть Р1 (вторая посылка); S не есть p2 (заключение). Такую форму имеет, напр., следующее умозаключение: «Жидкие кол­лоидные системы бывают эмульсиями либо золями. Данная жидкая коллоидная система является эмульсией. Данная жидкая коллоид­ная система не является золем». В таком умозаключении для обеспе­чения его правильности в разделительной посылке союз «или» («либо») должен употребляться в строго разделительном смысле (см.: Дизъюнкция).


[295]
Простейшая форма модуса (2) имеет вид: S есть Р1 или p2, S не есть р1; следовательно, S есть Р2. Пример:
Организмы бывают одноклеточными или многоклеточными.
Данный организм не является одноклеточным.
Данный организм является многоклеточным.
В таком умозаключении для обеспечения его правильности в пер­вой посылке должны быть перечислены все члены дизъюнкции (аль­тернативы).
РАЗДЕЛИТЕЛЬНО-УСЛОВНОЕ УМОЗАКЛЮЧЕНИЕ, см.: Ди­лемма.
РАЗРЕШАЮЩАЯ ПРОЦЕДУРА, см.: Разрешения проблема.
РАЗРЕШЕНИЯ ПРОБЛЕМА, или: Разрешимости пробле­ма,
— проблема нахождения для данной дедуктивной теории общего метода, позволяющего решать, может ли отдельное утверждение, сфор­мулированное в терминах теории, быть доказано в ней или нет. Этот общий метод, являющийся эффективной процедурой (алгоритмом), называется процедурой разрешения или разрешающей процедурой, а теория, для которой такая процедура существует, — разрешимой теорией.
Р. п. решается в классической логике высказываний с помощью таблиц истинности. Разрешающий алгоритм существует и для логи­ки одноместных предикатов, для силлогизма категорического и дру­гих простых дедуктивных теорий. Но уже для логики предикатов общего решения Р. п. не существует. В математике также невозможно установить общий метод, который дал бы возможность провести различие между утверждениями, которые могут быть доказаны в ней, и теми, которые в ней недоказуемы.
Невозможность найти для теории общий разрешающий метод не исключает поиска процедуры разрешения для отдельных классов ее
утверждений.
РАЗРЕШИМАЯ ТЕОРИЯ
— теория, для которой существует эф­фективная процедура (алгоритм), позволяющая о каждом утвержде­нии, сформулированном в терминах этой теории, решить, выводимо оно в теории или нет (см.: Разрешения проблема).
Р. т. являются, напр., элементарная алгебра Буля, теория сложения целых чисел и некоторые иные простые математические теории. Не­разрешима арифметика целых чисел (т. е. теория четырех главных арифметических действий над целыми числами) и каждая дедук­тивная теория, содержащая арифметику.
РАЦИОНАЛЬНОСТЬ (от лат. ratio - разум)
- относящееся к ра­зуму, обоснованность разумом, доступное разумному пониманию, в



[296]
противоположность иррациональности как чему-то неразум­ному, недоступному разумному пониманию.
В методологии научного познания Р. понимается двояко. Чаще всего Р. истолковывается как соответствие законам разума — законам логики, методологическим нормам и правилам. То, что соот­ветствует логико-методологическим стандартам, — Р., то, что наруша­ет эти стандарты, — нерационально или даже иррационально. Иногда под Р. понимают целесообразность. То, что способствует достижению цели, — Р., то, что этому препятствует, — нерациональность.
До недавних пор считалось, что образцом Р. деятельности явля­ется наука и деятельность ученого. Все остальные сферы человечес­кой деятельности Р. лишь в той мере, в какой они опираются на научные знания и методы. В настоящее время признано, что каждая область деятельности имеет свои стандарты Р., которые далеко не всегда совпадают с научными, поэтому можно говорить о Р. в ис­кусстве, в политике, в управлении и т. д. Поэзия столь же Р., как и наука, но в ней иные стандарты Р.
РЕКУРСИВНОЕ ОПРЕДЕЛЕНИЕ (от лат. recurso - возвраща­юсь)
— метод определения арифметической функции ?(у) или пре­диката Р(у) через область значений этой функции или предиката. Примером Р. о. может быть определение функции сложения:
а + 0 = а, (1)
а + b'=(а+b)' (2)
В равенстве (1) говорится, что некоторое фиксированное число а (см.: Параметр) при прибавлении к нему нуля дает число а. В равенстве (2) говорится., что если к некоторому фиксированному числу а добавить число, следующее за некоторым фиксированным числом b (т. е. b', или число b+1), то эта сумма будет равна числу, следующему за суммой чисел а+b. Напр., если к числу 2 добавить число, следующее за числом 3, т. е. число 4, то этот же результат можно получить, сложив 2 и 3 и перейдя от полученной суммы к следующему за ней числу. Значение левой и правой частей равенства в данном случае равно 6. Такого рода функции позволяют вычислять значение суммы самых различных чисел. При этом осуществляется переход от некото­рого числа п к следующему за ним (к п', или п+1), т. е. строится натуральный ряд чисел начиная с нуля. Допустим, нам требуется сло­жить 5 и 2. Тогда число 2 представим как следующее за 1, т. е. как 1'. Итак, имеем:
а)5+2=5+1'=(5+1)' б)5+1=5+0'=(5 + 0)'}по равенству (2),
в) 5+0=5 - по равенству (1).



[297]
Теперь будем возвращаться от равенства 5+0=5 (в) к равенству (б), а затем к равенству (а). Раз 5+0=5, то (5+0)'=6 (см. равенство (б)). Раз 5+1 равно 6, то (5+1)'=7 (см. равенство (а)). Итак, 5+2=7. В основе вычислимости арифметических функций, определяемых рекурсивно, лежит класс некоторых других функций, считающих­ся заданными с самого начала, которые называются примитивно-рекурсивными.
РЕЛЕВАНТНАЯ ИМПЛИКАЦИЯ, см.: Релевантная логика.
РЕЛЕВАНТНАЯ ЛОГИКА
- одна из наиболее известных неклас­сических теорий логического следования. В названии «Р. л.» отражает­ся стремление выделить и систематизировать только уместные (релевантные) принципы логики, исключив, в частности, парадоксы импликации, свойственные импликации материальной классической логики, строгой импликации и др. импликациям.
В Р. л. формальным аналогом условного высказывания является релевантная импликация, учитывающая содержательную связь, существующую между основанием (антецедентом) и след­ствием (консеквентом) такого высказывания. Выражение «Утвер­ждение A релевантно имплицирует утверждение В» означает, что В содержится в A и информация, представляемая В, является частью информации A. В частности, A не может релевантно имплицировать В, если в В не входит хотя бы одно из тех утверждений, из которых
слагается А.
В Р. л. не имеет места принцип, позволяющий из противоречия выводить какое угодно высказывание. Эта логика является, таким образом, одной из паранепротиворечивых логик, не отождествляющих противоречивость опирающихся на них теорий с их тривиальностью, т. е. с доказуемостью в них любого утверждения.
В Р. л. логически истинное высказывание невыводимо из произ­вольно взятого высказывания.
РЕФЕРЕНТ (от лат. refero — называть, обозначать)
— объект, обо­значаемый некоторым именем, то же, что и денотат. Напр., Р. выра­жения «первый космонавт» будет Юрий Гагарин (см.: Имя, Дено­тат).
РЕФЕРЕНЦИЯ
— отношение между обозначаемым и обозначаю­щим, между предметом и его именем. Отношение Р. изучается теори­ей референции — разделом логической семантики (см.: Имя, Дено­тат).


[298]


C
СВОЙСТВО
— характеристика, присущая вещам и явлениям, позволяющая отличать или отождествлять их. Каждому предмету присуще бесчисленное количество свойств, которые делятся на су­щественные и несущественные, необходимые и случайные, общие и специфические и т. д.
В логике С. называют то, что обозначается одноместным предика­том, напр.: «... есть человек», «... есть зеленый» и т. п. При постановке на пустое место имени к.-л. объекта мы получаем истинное или лож­ное высказывание: «Сократ есть человек», «Снег зеленый».
СВЯЗКА
— в традиционной логике элемент простого суждения, соединяющий субъект и предикат. В повседневном языке С. обычно выражается словами «есть», «суть», «является» и т. п., напр.: «Узбеки являются жителями Средней Азии». В обыденной речи С. часто опус­кается и приведенное выше предложение обычно выглядит так: «Уз­беки живут в Средней Азии». Однако даже если С. не выражена ка­ким-то специальным словом, она обязательно присутствуют в суж­дении. Напр., два понятия «город» и «населенный пункт» образуют суждение только после того, как их соединит С. «Город есть неселен­ный пункт». Поэтому схематическое представление простого сужде­ния включает в себя три элемента — субъект, предикат и связку: «5 есть Р». С. может быть утвердительной или отрицательной («есть» или «не есть»). Именно этим определяется качество простого суждения.
В символической логике пропозициональными связками называ­ют логические союзы (операторы), с помощью которых из про­стых высказываний получают сложные высказывания. К ним обычно относят отрицание, конъюнкцию, дизъюнкцию, импликацию и т. п. Условия истинности сложных высказываний, содержащих пропо-
[299]
зициональные связки, формулируются посредством таблиц истин­ности. (См.: Суждение.)
СЕМАНТИКА ЛОГИЧЕСКАЯ
— раздел логики (металогики), ис­следующий отношение языковых выражений к обозначаемым объектам и выражаемому содержанию. Проблемы семантики об­суждались еще в античности, однако в качестве самостоятельной дисциплины она стала оформляться на рубеже XIX—XX вв. благо­даря работам Ч. Пирса, Г. Фреге, Б. Рассела. Значительный вклад в разработку проблем С. л. внесли А. Тарский, Р. Карнап, У. Куайн, Дж. Кемени, К. И. Льюис, С. Крипке и др. В течение длительного времени С. л. ориентировалась преимущественно на анализ фор­мализованных языков, однако в последние 20 лет все больше исследований посвящается естественному языку.
В С. л. традиционно выделяют две области — теорию референции (обозначения) и теорию смысла. Теория референции исследует от­ношение языковых выражений к обозначаемым объектам, ее ос­новными категориями являются: «имя», «обозначение», «выполни­мость», «истинность», «интерпретация», «модель» и т. п. Теория ре­ференции служит основой теории доказательств в логике. Теория смысла пытается ответить на вопрос о том, что такое смысл языко­вых выражений, когда выражения являются тождественными по смыслу, как соотносятся смысл и денотат и т. п. Значительную роль в С.л. играет обсуждение семантических парадоксов, решение кото­рых является важным критерием приемлемости любой семантичес­кой теории.
СЕМАНТИЧЕСКАЯ КАТЕГОРИЯ
- класс языковых выражений, взаимная замена которых в предложении сохраняет его граммати­ческий статус, т. е. предложение остается предложением. Если, напр., в предложении «Волга впадает в Каспийское море» слово «Волга» мы заменим словом «Нева», то получим хотя и ложное, но все-таки предложение. Это означает, что слова «Волга» и «Нева» принадлежат одной С.к. Но если вместо слова «Волга» мы поставим слово «мень­ше», то у нас окажется бессмысленный набор слов, следовательно, слова «Волга» и «меньше» принадлежат разным С. к.
Наиболее известную систему С. к. разработал польский логик К. Айдукевич (1890—1963). Исходными категориями его системы яв­ляются категории собственных имен (n) и высказыва­ний (s). Предполагается, что каждое правильно построенное выра­жение языка может быть расчленено на функтор и его аргументы. Категория функтора определяется как дробь, в знаменателе которой стоят категории аргументов, а в числителе - категория выражения, образующегося в результате сочленения функтора с аргументами.


[300]
Напр., к какой С. к. принадлежит одноместный предикат «...бел»? Его единственным аргументом является некоторое имя, категория которого помещается в знаменателе дроби; в результате соединения предиката с именем получается предложение, категория которого

помещается в числителе дроби, получается . С. к. двухместного пре­диката, скажем, «больше», будет выглядеть
так: . Логические связ­ки можно рассматривать как функторы, применяемые к предложе­ниям, причем в результате опять получается предложение. Т. о., кате­гория бинарной связки, скажем, «или», «если, то» и т. п., будет
выглядеть так: . Теория С. к. служит основой для классификации
формализованных языков и определения важных семантичес­ких понятий, например понятия истины.
СЕМАНТИЧЕСКИЕ ПАРАДОКСЫ, см.: Антиномия.
СЕМАНТИЧЕСКОЕ ПОНЯТИЕ ИСТИНЫ
- классическое поня­тие истины, уточненное с помощью технических средств логичес­кой семантики. Это уточнение было осуществлено польским мате­матиком и логиком А. Тарским в работе «Понятие истины в фор­мализованных языках» (1935). Тарский исходит из классического представления об истине, согласно которому термин «истинно» вы­ражает свойство нашего знания, в частности свойство высказываний, а не объективной действительности. Высказывание счита­ется истинным тогда и только тогда, когда оно утверждает, что дела обстоят так-то и так-то, и дела действительно обстоят именно так. Напр., высказывание «Париж находится во Франции» истин­но тогда и только тогда, если Париж находится во Франции; выс­казывание «Сахар растворим в воде» истинно тогда и только тог­да, если сахар растворим в воде, и т. п. Подобного рода определе­ния истинности отдельных высказываний Тарский обобщает в виде следующей схемы:
X истинно ? Р.
Для того чтобы получить определение истинности некоторого конкретного высказывания, на место Х в этой схеме нужно поста­вить кавычковое имя данного высказывания (т. е. высказывание в кавычках), а на место Р — само это высказывание, знак «=» означа­ет «тогда и только тогда, когда». Напр.: «Снег бел» истинно тогда и только тогда, когда снег бел. Общее определение истины должно быть таким, чтобы ему соответствовали все конкретные случаи при­менения понятия «истинно», представленные приведенной схемой.
Тарский показал, однако, что для обычного естественного язы­ка задача построения общего определения истины не может быть


[301]
решена. Одной из причин этого является то обстоятельство, что в естественном языке имеются предложения, утверждающие собствен­ную ложность (типа «Я лгу»). Попытка применить к ним термин «истинно» согласно приведенной схеме ведет к противоречию. Тарский считает, что это противоречие возникает благодаря «семанти­ческой замкнутости» естественного языка, т. е. благодаря тому, что в этот язык входят и предложения, и имена этих предложений, и семантические предикаты — «обозначать», «истинно», «выполнять» и т. п. Для устранения подобных парадоксов Тарский считает необ­ходимым разделить язык на две части: объективный язык и метаязык. Определение истины должно формулироваться в мета­языке. В этом случае парадоксов не возникает.
С. п. и. не только является одним из основных понятий логичес­кой семантики, оно существенно уточняет и наше философское пред­ставление об истине.
СЕМИОТИКА
- общая теория знаковых систем, к числу кото­рых относятся как естественные языки, так и специальные язы­ки конкретных наук, искусственные языки, сигнальные систе­мы и т. п. Основы С. были заложены в трудах швейцарского лингви­ста Ф. де Соссюра и амер. логика Ч. Пирса (конец XIX в.). Последующую разработку различных разделов С. осуществляли Ч. Моррис, А. Тар­ский, Р. Карнап и др.
С. выделяет 3 аспекта (уровня) исследований любой знако­вой системы: 1) синтактика изучает формальную структуру знаков и их сочетаний, правила их образования и преобразования; 2) семантика основное внимание уделяет анализу значения и смысла языковых выражений; 3) прагматика исследует отно­шения между знаковыми системами и теми, кто их воспринимает, интерпретирует и использует.
СИЛЛОГИЗМ (от греч. sillogismos) категорический
- дедуктив­ное умозаключение, в котором из двух суждений, имеющих субъектно-предикатную форму («Все S суть Р», «Ни одно S не есть Р», «Некоторые 5 суть Р», «Некоторые 5 не есть Р»), следует новое суждение (заключение), имеющее также субъектно-предикатную форму (см.: Суждение). Примером С. может быть:
Все жидкости упруги.
Ртуть - жидкость.(1)

Ртуть упруга.

В этом С. посылки стоят над чертой, а заключение - под чертой. Черта, отделяющая посылки от заключения, означает слово «следо­вательно». Слова и словосочетания, выражающие понятия, фигури-



[302]
рующие в С., называют терминами С. В каждом С. имеется три термина: меньший, больший и средний. Термин, соответствующий субъекту заключения, носит название меньшего термина (в приме­ре (1) таким термином будет «ртуть») и обозначается знаком S. Термин, соответствующий предикату заключения, носит название большего термина (в примере (1) таким термином будет «упруга») и обозначается знаком Р. Термин, который присутствует в посыл­ках, но отсутствует в заключении, носит название среднего терми­на (в примере (1) таким термином будет «жидкость») и обознача­ется знаком М. Логическую форму С. (1) можно представить в виде:
Все М суть Р.
Все S суть М.
Все S суть Р.
С., таким образом, представляет собой дедуктивное умозаклю­чение, в котором на основании установления отношений меньшего и большего терминов к среднему термину в посылках устанавлива­ется отношение между меньшим и большим терминами в заключе­нии. Та посылка, в которую входит больший термин, носит назва­ние большей посылки (в примере (1) — «Все жидкости упруги»). Та посылка, в которую входит меньший термин, носит название мень­шей посылки. Для иллюстрации того, следует ли заключение из посылки с логической необходимостью, используются Эйлера круги. Так, соотношение между терминами С. (1), изображенное с помо­щью кругов Эйлера, имеет следующий вид (см. рис.).


Эту схему можно интерпретировать так: если все М (жидкости) входят в объем Р (упругих тел) и если все S (ртуть) входят в объем М (жидкостей), то с необходимостью ртуть (S) войдет в объем упругих тел (Р), что и фиксируется в заключении: «Всякая ртуть упруга». По отношению к С. формулируется ряд правил. Напр.: из двух посылок, представляющих собой отрицательные суждения, нельзя сде­лать никакого заключения; если одна посылка — отрицательное суждение, то заключение должно быть отрица­тельным суждением; из двух посы­лок, представляющих собой частные суждения, нельзя сделать заключения и т. п. Наиболее часто встречающиеся ошибки в С. можно исключать, опи­раясь на правила, формулируемые по отношению к фигурам С. С., отлича-


[303]
ющиеся друг от друга расположением среднего термина в посыл­ках, принадлежат различным фигурам. Средние термины в С. могут располагаться следующим образом: 1) средний термин М может быть субъектом в большей посылке и предикатом в меньшей (1-я фигура); 2) средний термин может быть предикатом в обеих посыл­ках (2-я фигура); 3) средний термин может быть субъектом в обеих посылках (3-я фигура); 4) средний термин может быть предикатом в большей посылке и субъектом в меньшей (4-я фигура). Схемати­чески фигуры изображаются так:
По схеме 1-й фигуры построен С.:
Все металлы (М) электропроводны (Р).
Стронций (S) — металл (М).__________
Стронций электропроводен.
По схеме 2-й фигуры построен С.:
Все рыбы (Р) дышат жабрами (М).
Кашалоты (S) не дышат жабрами (М).____
Кашалоты — не рыбы.
По схеме 3-й фигуры построен С.:
Все бамбуки (М) цветут один раз в жизни (Р).
Все бамбуки (М) — многолетние растения (S).
Некоторые многолетние растения цветут один раз в жизни.
Правила 1-й фигуры С.: 1) большая посылка должна быть общей (общеутвердительным или общеотрицательным суждением); 2) мень­шая посылка должна быть утвердительной (общеутвердительным или частноутвердительным суждением). Если хотя бы одно из правил нару­шено, С. является неправильным: заключение в нем не следует с необ­ходимостью из посылок и может оказаться ложным. Таков, напр., С.:
Все преступления осуждаются общественностью.
Данное деяние не есть преступление.
Данное деяние не осуждается общественностью.



[304]
В этом С. нарушено правило (2): меньшая посылка является не ут­вердительной, а отрицательной.
Правила 2-й фигуры: 1) большая посылка должна быть общей; 2) одна из посылок должна быть отрицательной.
Правила 3-й фигуры: 1) меньшая посылка должна быть утвер­дительной; 2) заключение должно быть частным суждением.
Модусами фигур С. называются разновидности фигур С., отли­чающиеся качественной и количественной характеристикой входя­щих в них посылок и заключения. Посылка и заключение, т. о., в каждом случае могут выступать как суждения вида A, E, I, О (см.: Суждение). На первом месте в символическом выражении модуса за­писывается большая посылка, на втором — меньшая, на третьем — заключение. Так, выражение для модуса ЕЮ означает, что боль­шая посылка в нем является общеотрицательным суждением, мень­шая — частноутвердительным, а заключение — частноотрицательным. Всего с точки зрения всевозможных сочетаний посылок и зак­лючения в каждой фигуре насчитывается 64 модуса. В четырех фигурах насчитывается 64 х 4 = 256 модусов. Из них правильными (т. е. таки­ми, которые при истинности посылок всегда дают истинное заклю­чение) может быть 24, включая и т.наз. ослабленные модусы, т. е. такие, для которых существуют модусы, дающие более сильные заключения. Модус считается более слабым, если мы получаем в заключении суждения вида / и О, хотя можем получить соответ­ственно суждения A и Е. Неослабленных модусов фигур С. - 19. Модусы 1-й фигуры: АAА, ЕАЕ, АII, ЕIO; модусы 2-й фигуры ЕАЕ, AЕЕ, ЕIO, АОО; модусы 3-й фигуры: AAI, IAI, АII, ЕАО, ОАО, ЕIO, модусы 4-й фигуры: AAI, AEE, IAI, ЕАО, ЕIO.
Так, С.:
Ни одно насекомое не имеет более трех пар ног (Е).
Все чешуекрылые — насекомые (A).____________
Ни одно чешуекрылое не имеет более трех пар ног (Е)
относится к 1 -й фигуре и имеет форму модуса ЕАЕ. Если посылки в С., построенных по схеме одного из правильных модусов, являют­ся истинными, то и заключение будет истинным.
СИМВОЛ (от греч. symbolon — знак, опознавательная приме­та)
- идея, образ или объект, имеющий собственное содержание и одновременно представляющий в обобщенной, неразвернутой фор­ме некоторое иное содержание. С. стоит между (чистым) знаком, у которого собственное содержание ничтожно, и моделью, имеющей прямое сходство с моделируемым объектом, что позволяет модели замещать последний в процессе исследования.


[305]
С. используется человеком в некоторых видах деятельности и имеет в силу этого определенную цель. Он всегда служит обнару­жению чего-то неявного, не лежащего на поверхности, непредска­зуемого. Если цель отсутствует, то нет и С. как элемента социальной жизни, а есть то, что обычно называется знаком и служит для простого обозначения объекта.
Роль С. в человеческой практике и познании мира невозможно переоценить. Э. Кассирер даже определял человека как «символизи­рующее существо». И это определение вполне приемлемо, если сим­волизация понимается как специфическая и неотъемлемая характе­ристика деятельности индивидов и социальных групп и если описа­тельная функция С. не оказывается, как это случилось у Кассирера, второстепенной и даже производной от других функций С.
Три примера С. В «Божественной комедии» Данте Беатриче — не только действующее лицо, но и символ чистой женственности. Од­нако «чистая женственность» - это опять-таки С., хотя и более интеллектуализированный. Смысл последнего будет более понятен, если вспомнить, что Данте находит возможным уподобить Беатриче теологии. По средневековым представлениям теология является вер­шиной человеческой мудрости, но одновременно это и размышление о том, подлинное знание чего в принципе недоступно человеку.
Разъяснение смысла С. неизбежно ведет к новым С.; которые не только не способны исчерпать всю его глубину, но и сами требуют разъяснения.
Другой пример: бесконечное прибавление по единице в ряду натуральных чисел используется Гегелем не столько в качестве при­мера, сколько в качестве С. того, что он называет «дурной бесконеч­ностью». Смысл С. — и в данном примере, и обычно - носит дина­мический, становящийся характер и может быть уподоблен тому, что в математике именуется «потенциальной бесконечностью» и проти­вопоставляется «актуальной», завершенной бесконечности. Вместе с тем, С. является с точки зрения его смысла чем-то цельным и зам­кнутым.
Более сложным примером социального С. может служить дерево мудьи, или молочное дерево, — центральный символ ритуала совер­шеннолетия девочек у народности ндембу в Северо-Западной Зам­бии. Это дерево представляет собой женственность, материнство, связь матери с ребенком, девочку-неофита, процесс постижения «женской мудрости» и т. п. Одновременно оно представляет грудное молоко, материнскую грудь, гибкость тела и ума неофита и т. п.
Множество значений этого С. отчетливо распадается на два по­люса, один из которых можно назвать описательно-пре-



[306]
скриптивным, а другой — эмоциональным. Взаимосвязь аспектов каждого из полюсов не является постоянной: в разных ситуациях один из аспектов становится доминирующим, а осталь­ные отходят на задний план.
У С. всегда имеется целое семейство значений. Они связываются в единство посредством аналогии или ассоциации, которые могут опираться как на реальный, так и на вымышленный мир. С. конден­сирует множество идей, действий, отношений между вещами и т. д. Он является свернутой формой высказывания или даже целого рас­сказа. Как таковой, он всегда не только многозначен, но и неопреде­ленен. Его значения чаще всего разнородны: это могут быть образы и понятия, конкретное и абстрактное, познание и эмоции, сенсорное и нормативное. С. может представлять разнородные и даже противо­положные темы. Нередко даже контекст, в котором он фигурирует, оказывается неадекватным в качестве средства ограничения его мно­гозначности. Единство значений С. никогда не является чисто по­знавательным, во многом оно основывается на интуиции и чувстве.
С. как универсальная (эстетическая) категория раскрывается че­рез сопоставление его с категориями художественного образа, с од­ной стороны, знака и аллегории - с другой. Наличие у С. внешнего и внутреннего содержания сближает его с софизмом, антиномией, притчей как особыми формами первоначальной, неявной постанов­ки проблемы.
С. является, далее, подвижной системой взаимосвязанных функ­ций. В познавательных целях он используется для классификации вещей, для различения того, что представляется смешавшимся и не­ясным. В других функциях он, как правило, смешивает многие по очевидности разные вещи. В эмотивной функции С. выражает состояния души того, кто его использует. В эректической фун­кции С. служит для возбуждения определенных желаний и чувств. При использовании С. с магической целью он должен, как предполагается, привести в действие определенные силы, нарушая тем самым привычный, считаемый естественным ход вещей.
Эти функции С. выступают обычно вместе, во взаимопереплете­нии и дополнении. Но в каждом конкретном случае доминирует одна из них, что позволяет говорить о познавательных С., магичес­ких С. и т. д.
Всякое познание всегда символично. Это относится и к научному познанию. С., используемые для целей познания, имеют, однако, целый ряд особенностей.
Прежде всего, у этих С. явно доминирует познавательный аспект и уходит в глубокую тень возбуждающий момент. Смыслы, сто-
[307]
ящие за познавательным С., являются довольно ясными, во вся­ком случае они заметно яснее, чем у С. других типов. Из серии смыслов познавательного С. лишь один оказывается уместным в момент предъявления конфигурации С. Это придает такому С. ана­литическую силу и позволяет ему служить хорошим средством пред­варительной ориентировки и классификации. Для познавательных С. особенно важна та символическая конфигурация, в которой они выступают: она выделяет из многих смыслов С. его первоплановый смысл. Употребление познавательного С. не требует, чтобы исполь­зующий его выражал с его помощью какие-то особые и тем более чрезвычайные эмоции или чувства. Напротив, это употребление пред­полагает определенную рассудительность и рациональность как со стороны того, к кому обращен С., так и со стороны того, кто его употребляет. Последний должен отстраниться и снять по возможно­сти субъективный момент; объективируя С., он должен позволить ему говорить от себя. Относительно ясны не только смыслы позна­вательного С., но и их связи между собой, а также связь смыслов с тем контекстом, в котором используется С.: конфигурации смыс­лов С. почти всегда удается поставить в соответствие определенную конфигурацию элементов самого контекста.
В познании С. играют особенно важную и заметную роль в пери­оды формирования научных теорий и их кризиса, когда нет еще твердой в ядре и ясной в деталях программы исследований или она начала уже разлагаться и терять определенность. По мере уточнения, конкретизации и стабилизации теории роль С. в ней резко падает. Они постепенно «окостеневают» и превращаются в «знаки». В даль­нейшем, в условиях кризиса и разложения теории, многие ее знаки снова обретают характер С.: они становятся многозначными, начи­нают вызывать споры, выражают и возбуждают определенные ду­шевные состояния, побуждают к деятельности, направленной на транс­формацию мира, задаваемого теорией, на нарушение привычных, «ес­тественных» связей его объектов.
Так, выражение «v-1» было С. до тех пор, пока не была разра­ботана теория мнимых и комплексных чисел. Введенное Лейбницем выражение для обозначения производных «(dx/dy)» оставалось С. до XIX в., когда Коши и Больцано была найдена подходящая ин­терпретация для этого С., т. е. был однозначно определен его смысл. Кризис теории и появление в ней парадоксов — характерный при­знак того, что центральные ее понятия превратились в многознач­ные и многофункциональные С.
СИМВОЛИКА ЛОГИЧЕСКАЯ
- система знаков (символов), ис­пользуемая в логике для обозначения термов, предикатов, выска-


[308]
зываний, логических функций, отношений между высказывания­ми. В разных логических системах могут использоваться различные системы обозначений, поэтому ниже мы приводим лишь наиболее употребительные символы из числа используемых в литературе по логике:
а, b, с, ...
- начальные буквы латинского алфавита, обычно ис­пользуются для обозначения индивидуальных кон­стантных выражений, термов;
A, В, С, ...
— прописные начальные буквы латинского алфавита, обычно используются для обозначения конкретных высказываний;

х, у, z, ...
— буквы, стоящие в конце латинского алфавита, обыч­но используются для обозначения индивидных пере­менных;
X, Y, Z, ...
— прописные буквы, стоящие в конце латинского ал­фавита, обычно используются для обозначения пере­менных высказываний или пропозициональных пе­ременных; для той же цели часто используют малень­кие буквы середины латинского алфавита: р, q, r, ...;
˜ ; u
- знаки, служащие для обозначения отрицания; чита­ются: «не», «неверно что»;
; U ; &
- знаки для обозначения конъюнкции — логической связ­ки и высказывания, содержащего такую связку в ка­честве главного знака; читаются: «и»;
U
- знак для обозначения неисключающей дизъюнкции — логической связки и высказывания, содержащего та­кую связку в качестве главного знака; читается: «или»;
- знак для обозначения строгой, или исключающей, дизъюнкции; читается: «либо, либо»;
®; E
— знаки для обозначения импликации — логической связ­ки и высказывания, содержащего такую связку в ка­честве главного знака; читаются: «если, то»;
? ; «
- знаки для обозначения эквивалентности высказыва­ний; читаются: «если и только если»;
- знак, обозначающий выводимость одного высказы­вания из другого, из множества высказываний; чи­тается: «выводимо» (если высказывание А выводимо из пустого множества посылок, что записывается как « A», то знак « » читается: «доказуемо»);
T ; t
F ; f— истина (от англ. true — истина); - ложь (от англ. false - ложь);
"— квантор общности; читается «для всякого», «всем»;


[309]

$
— квантор существования; читается: «существует», «име­ется по крайней мере один»;
L, N, 
— знаки для обозначения модального оператора необхо­димости; читаются: «необходимо, что»;
М, a — знаки для обозначения модального оператора воз­можности; читаются: «возможно, что».

Наряду с перечисленными в многозначных, временных, деон­тических и других системах логики используются свои специфичес­кие символы, однако каждый раз разъясняется, что именно тот или иной символ обозначает и как он читается (см.: Знак логический).
СИМВОЛИЧЕСКАЯ ЛОГИКА
- одно из названий современного этапа в развитии формальной логики.
Символы применял в ряде случаев еще Аристотель (384 — 322 до н. э.), а затем и все последующие ученые-логики. Однако в совре­менной С. л. был сделан качественно новый шаг в использовании символики. Стали использовать языки, содержащие только специ­альные символы и не включающие слова обычного разговорного языка.
СИМВОЛЫ СОБСТВЕННЫЕ И НЕСОБСТВЕННЫЕ
- символы, получающиеся в результате разложения предложения или иного языкового выражения на простые, далее неразложимые части. С. с. имеют содержание даже в том случае, если взяты сами по себе. К ним относятся имена, обозначающие некоторые объекты, и пере­менные, отсылающие к какой-то области объектов. С. н. не имеют самостоятельного содержания, но в сочетании с одним или не­сколькими С. с. образуют сложные выражения, имеющие самосто­ятельное содержание. С. н. называются также синкатегорематическими.
К С. н. относятся, в частности:
— скобки, в обычном языке — знаки препинания, указываю­щие, как объединяются между собой различные части выражения;
— логические связки, в частности те, которые использу­ются для образования сложных высказываний из простых: «...и...», «...или...», «если..., то...», «...тогда и только тогда, когда...», «ни..., ни...», «не..., а...», «..., но не...», «неверно, что... и...», «неверно, что...»;
— операторы, подобные оператору описания («тот объект, который ...») и кванторам («все» и «некоторые»).
Напр., само по себе слово «или» не обозначает никакого объекта. Но в совокупности с двумя (обозначающими) С. с. оно дает но­вый обозначающий символ: из двух имен «круглое» и «красное» с помощью «или» получается новое имя «круглое или красное»,



[310]
из двух высказываний «Письмо отправлено» и «Письмо сожже­но» — новое высказывание «Письмо отправлено или сожжено».
Центральная задача логики — отделение правильных схем рас­суждения от неправильных и систематизация первых. Логическая правильность определяется логической формой. Для ее выявления нуж­но отвлечься от содержательных частей рассуждения (С. с.) и сосре­доточить внимание на С. н., представляющих эту форму в чистом виде. Отсюда интерес формальной логики к таким словам, как «и», «или», «если и только если» и т. п.
СИНКАТЕГОРЕМАТИЧЕСКОЕ ВЫРАЖЕНИЕ, см.: Символы соб­ственные и несобственные.
СИНОНИМИЯ
— одно из важнейших понятий логической семан­тики, выражающее тождество значений языковых выражений. Два выражения считаются синонимичными, если имеют одно и то же значение. Это исходное представление о С. уточняется в логической семантике в различных отношениях: 1) по отношению к опреде­ленному языку или языкам; 2) по отношению к тем или иным видам языковых выражений (имен, предикатов, предложений и т. п.); 3) по отношению к определенному носителю языка; 4) по отношению к различным видам значения.
Так, напр., если мы говорим только о предметном значении языковых выражений, т. е. об их денотатах, то два выражения будут синонимичными в том случае, если их денотаты совпадают. Выражения «самая крупная птица на Земле» и «страус» являются с этой точки зрения синонимами. Критерием такой С. будет истин­ность предложения «Самая крупная птица на Земле является страу­сом». Данное предложение фактически истинно, что свидетельству­ет о том, что указанные выражения являются синонимами. Но если под значением мы имеем в виду не только предметное значение, но и смысл языковых выражений, то синонимами мы будем называть лишь такие выражения, у которых совпадают не только денотаты, но и смысл. Критерием такой С. является не просто истинность, но аналитическая истинность предложения, говорящего о тождестве двух выражений. Напр., истинность такого предложения, как «Вся­кий холостяк неженат», устанавливается не обращением к фактам, а логическим анализом входящих в него выражений, т. е. является аналитической. Следовательно, выражения «холостяк» и «неженат» являются синонимами в этом более строгом смысле.
СИНТАКСИС (греч. syntaxis — построение, порядок)
— раздел семиотики, исследующий структурные свойства систем знаков, пра­вила их образования и преобразования, отвлекаясь от их интерпре­тации. Синтаксисом формализованного языка называют систему пра-


[311]
вил построения выражений этого языка и проверки того, являются ли эти выражения правильно построенными формулами, аксиомами, теоремами, выводами или доказательствами.
СИНТАКСИЧЕСКАЯ КАТЕГОРИЯ
- класс однотипных выра­жений словаря формализованного языка. Этот словарь обычно включает: индивидные знаки — константы и переменные; предикатные выражения; знаки логических связок - от­рицания, конъюнкции, дизъюнкции и т. п.; кванторы — общ­ности и существования; пропозициональные переменные (знаки для предложений); вспомогательные символы -скобки, запятые и т. п.
Этот словарь служит материалом для образования формул и их преобразования.
СЛЕДОВАНИЕ, см.: Логическое следование.
СЛЕДСТВИЕ, см.: Логическое следование.
СЛОЖНОЕ ВЫСКАЗЫВАНИЕ
- высказывание, полученное с помощью логических связок из простых высказываний. Наиболее употребительны С. в., образованные с помощью слов: «и», «или», «если, то», «если и только если», «не». Вместо этих слов в логике используются символы: &, v, ->, ?, ˜. С. в. А& В называется конъ­юнкцией («А и В»), A v В - дизъюнкцией («А или В»), А -> В — импликацией («Если A, то В»), А = В — эквивалентностью («А, если и только если В»), ˜ А — отрицанием («Неверно, что A», или «не-A»).
Установление смысла и способа употребления логических свя­зок, позволяющих образовывать С. в., является задачей наиболее фундаментальной и вместе с тем самой простой части логики — исчисления высказываний.
СЛУЧАЙНОСТЬ ЛОГИЧЕСКАЯ
- одна из модальных характери­стик высказывания наряду с возможностью, необходимостью и не­возможностью; высказывание случайно, когда и оно само, и его отрицание являются возможными.
Случайно то, что может быть и может не быть. С. не равнозначна возможности, которая не может не быть. С. иногда называют «дву­сторонней возможностью», т. е. равной возможностью и высказыва­ния, и его отрицания. Логически возможно высказывание, не являю­щееся внутренне противоречивым. Если не только само высказыва­ние, но и его отрицание не содержат противоречия, высказывание является логически С. Случайно, напр., что все многоклеточные жи­вые существа смертны: ни утверждение этого факта, ни его отрица­ние не содержат внутреннего (логического) противоречия.
В соответствии с законами логики ни само случайное высказы­вание, ни его отрицание не вытекают из данных законов. С.л. мож-



[312]
но сопоставить с физической С., связанной с законами приро­ды. Физически (онтологически, каузально) случайно то, наличие и отсутствие чего не обусловлено законами природы. Напр., эллипти­ческие орбиты планет случайны логически, но не физически; они обусловлены законами небесной механики, но никак не связаны с законами логики.
С. л. анализируется модальной логикой в связи с понятиями необ­ходимости, возможности, невозможности. К числу законов, гово­рящих о С. л., относятся следующие:
>> отрицание случайного высказывания случайно (напр.: «Если случайно с точки зрения логики, что лошади не говорят, то случай­ным было бы, если бы они говорили»);
>> если случайно одно или другое, то случайно и то и другое («Если случайно сказано "да" или сказано "нет", то случайно и "да" и "нет"»), и т. п.
С. л. можно определить через логическую необходимость: выска­зывание случайно, когда ни оно само, ни противоположное выска­зывание не являются необходимыми. Чаще употребляется, однако, определение С.л. как «двусторонней возможности».
СМЫСЛ
— в повседневной речи синоним значения. В логичес­кой семантике общее значение языковых выражений расщепляют на две части: предметное значение и С. Предметным значением, денотатом, объемом, экстенсионалом и т. п. некоторого выражения называют тот предмет или класс предметов, которые обозначаются данным выражением. Вместе с тем каждое выражение несет в себе некоторое мысленное содержание, которое и называют С. Понять не­которое выражение значит усвоить его С. Если С. усвоен, то мы знаем, к каким объектам относится данное выражение, следовательно, С. выражения задает его денотат. Два выражения могут иметь одно и то же предметное значение, но различаться по С. Напр., выражения «самый большой город в России» и «город, в котором родился А. С. Пушкин» обозначают один и тот же объект — город Москву, однако обладают разными смыслами. Значением предложения обычно считают его истинностное значение — истину или ложь, С. предложе­ния — выражаемую им мысль. Т. о., все истинные предложения име­ют одно и то же значение и различаются только своим С.; то же самое относится к ложным предложениям. Анализом проблем, встающих в связи с попытками точно определить понятие С. для различных типов языковых выражений, занимается специальный раздел логической се­мантики — теория С. (см.: Имя, Значение, Семантика логическая).
СОВМЕСТИМОСТИ УСЛОВИЕ
- требование, чтобы выдвигае­мое положение (гипотеза) соответствовало не только тому факти-



[313]
ческому материалу, на базе которого и для объяснения которого оно выдвинуто, но и имеющимся в рассматриваемой области зако­нам, теориям и т. п. Если, к примеру, кто-то предлагает детальный проект вечного двигателя, то его критиков в первую очередь заин­тересуют не тонкости конструкции и не ее оригинальность, а то, знаком ли ее автор с законом сохранения энергии.
Являясь принципиально важным, С. у. не означает, что от каж­дого нового положения следует требовать полного, пассивного при­способления к тому, что сегодня принято считать «законом». Как и соответствие фактам, соответствие имеющимся теоретическим ис­тинам не должно истолковываться прямолинейно. Может случить­ся, что новое знание заставит иначе посмотреть на то, что прини­малось раньше, уточнить или даже что-то отбросить из старого знания. Согласование с принятыми теориями разумно до тех пор, пока оно направлено на отыскание истины, а не на сохранение авторитета старой теории. Выдвигаемая гипотеза должна учитывать . весь относящийся к делу материал и соответствовать ему. Но если конфликт все-таки имеет место, гипотеза должна быть в состоя­нии доказать несостоятельность того, что раньше принималось за твердо установленный факт или за обоснованное теоретическое положение. Во всяком случае, если этого нет, она должна позво­лять по-новому взглянуть на исследуемые явления, на факты и их теоретическое осмысление.
Новое положение должно находиться в согласии не только с хорошо зарекомендовавшими себя теориями, но и с определенны­ми общими принципами, сложившимися в практике науч­ных исследований. Эти принципы разнородны, они обладают разной степенью общности и конкретности, соответствие им желательно, но не обязательно. Наиболее известный из них - принцип про­стоты, требующий использовать при объяснении изучаемых явле­ний как можно меньше независимых допущений, причем после­дние должны быть возможно более простыми. Принцип простоты проходит через всю историю естествознания, в частности, Ньютон выдвигал особое требование «не излишествовать» в причинах при объяснении явлений. Простота не столь необходима, как согласие с опытными данными и соответствие ранее принятым теориям. Но иногда обобщения формулируются так, что точность и соответствие опыту в какой-то мере приносятся в жертву, чтобы достичь прием­лемого уровня простоты и в особенности простоты математического вычисления.
Еще одним общим принципом, часто используемым при оценке выдвигаемых положений, является принцип привычности


[314]
(консерватизма). Он рекомендует избегать неоправданных новаций и стараться, насколько это возможно, объяснять новые явления с помощью уже известных законов. Если требование простоты и кон­серватизм дают противоположные рекомендации, предпочтение дол­жно быть отдано простоте.
Принцип универсальности предполагает проверку выд­винутого положения на приложимость его к более широкому классу явлений, чем тот, на основе которого оно было первоначально сфор­мулировано. Если утверждение, верное для одной области, оказыва­ется достаточно универсальным и ведет к новым заключениям не только в исходной, но и в смежных областях, его объективная значимость заметно возрастает. Характерным примером здесь может служить гипотеза квантов, первоначально выдвинутая М.Планком только для объяснения излучения абсолютно черного тела.
Согласно принципу красоты, хорошая теория должна про­изводить особое эстетическое впечатление, отличаться элегантнос­тью, ясностью, стройностью и даже романтизмом.
Помимо указанных, имеются многие другие общие принципы, используемые при оценке новых идей и теорий. Среди этих прин­ципов есть не только неясные, но и просто ошибочные требования.
В каждой области знания имеются, далее, свои стандарты адекватности новой теории. Они являются не только контек­стуальными, но и имеют во многом конвенциональный характер. Эти стандарты, принимаемые научным сообществом, касаются об­щей природы объектов, которые исследуются и объясняются, той количественной точности, с которой это должно делаться, строгос­ти рассуждения, широты данных и т. п.
Таким образом, новые научные утверждения не оцениваются с помощью универсальных и неизменных критериев. Принимаемые в науке правила обоснования, требование совместимости, общие прин­ципы и стандарты адекватности не являются жесткими. Границы «научного метода» расплывчаты и отчасти конвенциональны. Любое значительное изменение теории ведет к изменению и совокупности тех методологических средств, которые в ней используются.
СОБИРАТЕЛЬНОЕ ПОНЯТИЕ, см.: Понятие.
СОВМЕСТИМОСТЬ
— вид отношения между понятиями и суж­дениями. Два понятия называются совместимыми, если их объемы совпадают полностью или частично, т. е. имеют хотя бы один общий элемент. Напр., понятия «политик» и «спортсмен» частично совпа­дают по своему объему: имеются люди, которые одновременно яв­ляются и политиками, и спортсменами, т. е. включаются в объем и первого, и второго понятия, следовательно, эти понятия совмести-



[315]
мы. Понятия «первоклассник» и «политик» не имеют общих элемен­тов в своем объеме, т. е. нет ни одного человека, который одновре­менно является первоклассником и политиком, следовательно, они несовместимы. Совместимые понятия могут быть: равнообъемными, подчиненными и подчиняющими, перекре­щивающимися.
Совместимыми называют такие суждения, которые могут быть вместе истинными, т. е. истинность одного не исключает истиннос­ти другого. Напр., суждения «Некоторые люди — блондины» и «Некоторые люди — не блондины» оба истинны, следовательно, они совместимы. В традиционной логике совместимыми считаются общеутвердительное и частноутвердительное, об­щеутвердительное и частноотрицательное, частно-утвердительное и частноотрицательное суждения. В математической логике совместимыми называют предложения, ко­торые вместе истинны хотя бы при одном наборе значений пере­менных. Напр., предложения А & В и А -> В совместимы, так как они одновременно истинны в том случае, когда А истинно и В истинно.
СОВРЕМЕННАЯ ЛОГИКА
— одно из имен для обозначения ны­нешнего этапа в развитии (формальной) логики, начавшегося во второй половине XIX в. — начале XX в. В качестве других имен этого этапа в развитии логики используются также термины математи­ческая логика и символическая логика. Определение «математичес­кая» подчеркивает сходство С. л. по используемым методам с мате­матикой. Определение «символическая» указывает на употребление в С. л. специально созданных для целей логического анализа языков формализованных, являющихся, так сказать, «насквозь символичес­кими». Определением «современная» новый этап противопоставля­ется традиционной логике, отличительной чертой которой было то, что она пользовалась при описании правильных способов рассужде­ния обычным, или естественным, языком, дополненным немногими специальными символами. Традиционная логика и С. л. не являются разными научными дисциплинами, а представляют собой два после­довательных периода в развитии одной и той же науки. Основное содержание традиционной логики вошло в С. л., хотя многое при этом оказалось переосмысленным.
С. л. с особой наглядностью показала, что развитие логики тесно связано с практикой теоретического мышления и прежде всего с развитием науки. Конкретные рассуждения дают логике материал, из которого она извлекает то, что именуется логической формой, логическим законом и т. п. Теории логической правильности оказы-



[316]
ваются в конечном счете очищением, систематизацией и обобщени­ем практики мышления.
С. л. активно реагирует на изменения в стиле и способе научного мышления, на осмысление его особенностей в методологии науки. Сфера приложений С. л. в изучении систем научного знания непре­рывно расширяется.
С. л. явилась основой для формирования широкой концепции логики научного познания (логики науки), занимающейся примене­нием идей, методов и аппарата логики к анализу не только дедук­тивных, но и всех иных систем научного знания.
В 30—40-е годы логика науки интенсивно разрабатывалась в рам­ках философии неопозитивизма, сделавшей логический анализ языка науки основным средством борьбы с «дурной метафизикой» и по­рождаемыми ею «псевдопроблемами». Неопозитивизм принял идею о безоговорочной применимости С. л. не только к математике, но и к опытному знанию и резко противопоставил свою логику науки традиционному философскому и методологическому исследованию познания. С точки зрения неопозитивизма, научное знание беспредпосылочно, полностью сводимо к непосредственному опыту и не зависит ни от «метафизики», ни от того социокультурного контек­ста, в котором существует; научная теория рассматривается только в статике, анализ ее возникновения и развития выносится за рамки методологии; факты считаются независимыми от теории и в сово­купности составляющими тот безусловный фундамент, к которому должны сводиться теоретические положения. Все эти особенности неопозитивистской методологии науки — изоляционизм, отказ от исследования научного знания в динамике, наивный индукционизм, эмпирический фундаментализм и редукционизм — сказались не только на самой этой методологии, но и на направляемом ею логическом анализе научного знания. Претенциозная программа све­дения философии науки к логическому анализу ее языка потерпела крах. Причина этого краха не в принципиальной неприменимости С.л. к опытному знанию, а в порочных философско-методологических установках, связанных с фетишизацией формальных аспектов познания, абсолютизацией языка и формальной логики.
Неопозитивистское расширительное истолкование возможностей С.л. в исследовании науки было преодолено только в конце 50-х — начале 60-х годов, когда стало очевидно, что задачи, которые выд­вигались перед С.л. неопозитивизмом, плохо поставлены и не име­ют решения.
Сейчас логический анализ научного знания с использованием С. л. активно ведется в целом ряде как давно освоенных, так и новых областей. Самым общим образом их можно обозначить так.

<< Пред. стр.

страница 10
(всего 13)

ОГЛАВЛЕНИЕ

След. стр. >>

Copyright © Design by: Sunlight webdesign