LINEBURG


<< Пред. стр.

страница 9
(всего 12)

ОГЛАВЛЕНИЕ

След. стр. >>

Именно операция выполнимости позволяет выявить истинность аксиомативно-дедуктивных исчислений.337 Под выполнимостью специалисты понимают наличие по крайней мере одной совокупности математических или вещественных объектов, на которой моделируются результаты данного исчисления, что и выясняется средствами практики (конкретно, путем практического построения).
Итак, действие практики как критерия истинности знаний отнюдь не стихийно и небезпроблемно; оно основано на сознательном, целенаправленном процессе проверки конкретных теоретических положений. Успешность его проведения требует зачастую немалой затраты времени и усилий. Характерной чертой проверки истины практикой служит произошедшее за последние десятилетия усложнение этой процедуры, включающей широкое использование теории, подтвержденной практически.

YII.5. ПРОБЛЕМА ИСТИНЫ. ХАРАКТЕРИСТИКИ
ИСТИНЫ.ИСТИНА, ЗАБЛУЖДЕНИЕ,
ЛОЖЬ. КРИТЕРИИ ИСТИНЫ.

Еще во времена античности возникла трактовка истины как соответствия знания вещам, объектам. Истина - это адекватное отражение действительности, воспроизведение ее такой, какова она на самом деле. Иными словами, истина представляет собой соответствующее действительности содержание наших знаний о ней.
Истина заключает в себе определенный итог процесса познания. Однако этот итог не конченный, не окончательный, а в каждом конкретном случае - промежуточный. Истина - процессуальна, она заключает в себе процесс движения знаний ко все более адекватному воспроизведению действительности.
Истина как процесс представляет собой движение мысли от неполного, приблизительно верного знания ко все более полному и точному знанию, или от истины относительной к истине абсолютной. Относительная истина характеризует неполноту, неокончательность, приблизительность наших знаний, их ограниченность на данном этапе развития познания. Абсолютная истина, напротив, концентрирует в себе то в наших знаниях, что является безусловным, не может быть опровергнуто или уточнено в будущем, что составляет элементы незыблемого, непреходящего знания в общем объеме относительного знания. А так называемые "вечные" истины являются своеобразными вариациями абсолютной истины, аккумулирующими в себе твердо установленные, точно зафиксированные, не подлежащие сомнению факты. Н.Г.Чернышевский писал к примеру, о том, что среди наших исторических знаний "бесспорно находится много, очень много сведений недостоверных, очень много ошибочных суждений; но есть в их составе такие знания, достоверность которых для каждого образованного человека так непоколебима, что он не может подвергать их сомнению, не отрекаясь от разума".338
Движение человеческого познания происходит в направлении овладения абсолютной истиной, складывающейся из суммы относительных истин. Каждый новый этап познания ограничен уровнем развития науки, условиями жизни общества, делающими наши знания относительными, т.е. неполными, приблизительными. Однако это не означает, что в ходе постижения действительности получаемые нами знания лишь обнаруживают свою относительность: новые стадии в развитии познавательного процесса прибавляют и новые крупицы абсолютной истины. В целом, вырабатывая относительные истины, познание в ходе их суммирования пополняет и багаж абсолютной истины; приближая нас ко все более полному и всестороннему знанию о действительности.
Относительные истины - это истины, нуждающиеся в уточнении пределов и условий их действия, в дополнении, углублении, конкретизации, словом, в дальнейшем развитии. Попытки признавать существование одних относительных истин получили название релятивизм (от лат. relativus - относительный). Представители релятивизма рассматривают познание как относительное, условное, субъективное. Такая позиция весьма ярко выражена уже во взглядах древнегреческого софиста Горгия (ок.483-375г.г. до н.э.). В ХХ столетии релятивистские установки отчетливо проявились в воззрениях отечественного философа, культуролога и экономиста А.А.Богданова.
Стремление оперировать одними абсолютными истинами вобрал в себя догматизм (от греч. dogma - мнение, учение, постановление). Догматизм представляет собой некритический односторонний, антиисторичес-кий тип мышления. Он не учитывает специфические условия места, времени, действия выдвигаемых положений. Сам термин "догматизм" был введен древнегреческими философами Пирроном и Зеноном. Правда, первоначально он имел другое значение: догматической называли всякую философию, поскольку она формирует определенные положения.
Важнейшей характеристикой истины является единство в ней объективного и субъективного. Истина объективна по своему содержанию и субъективна по форме выражения. Недаром же научные выводы, сделанные независимо друг от друга разными учеными, имеют в каждом конкретном случае специфическое выражение. Однако объективность истины подчеркивает то обстоятельство, что она выражает такое знание, содержание которого не зависит ни от человека, ни от человечества.
Истину характеризует и такое свойство как ее конкретность. Оно - свидетельство того, что об объекте судят на основании его реальных связей. Истина конкретна в силу того, что она отражает объект либо какую-нибудь из его сторон в определенных условиях места ? времени. Изме-нения этих условий ведет к тому, что истина теряет свою правомерность, утрачивает в новых обстоятельствах право считаться истиной.
Только в том случае, если оговорены условия, при наличии которых сформулировано то или иное положение, можно говорить об истинности или ложности таких положений. Истина вне учета обстоятельств времени и пространства не существует. В этом смысле надо понимать известное положение о том, что абстрактной истины нет, она всегда конкретна. Это особенно важно иметь в виду при применении выводов той или иной общей теории к конкретным ситуациям. Не менее важен конкретно-исторический подход при исследовании социальных явлений: общество изменяется чрезвычайно быстро, и любые его характеристики вне связей и отношений столь же бессодержательны и бессмыслены как и применительно к связям и отношениям, изменения которых не учитывается.
Процесс постижения истины всегда сопровождается оперированием заблуждениями. Принимая за истинное то, что на самом деле не соответствует реальности, люди впадают в заблуждения. Словом, осуществляя в ходе познания поиск истины, человек пользуется возможностями свободы выбора, и именно это неизбежно приводит его к заблуждениям.
Гельвеций так объяснял возникновение заблуждений: "Каждый ограниченный ум, каков он у человека, подвержен заблуждению, потому что даже самые малые предметы имеют бесконечное количество отношений, которые ограниченный ум не может понять, так как охотно полагает, будто отношения которых он не замечает, вовсе не существуют".339
Человек прозревает, обнаруживая заблуждения, как правило, неожиданно. Обнаружение неистинности отстаивавшихся им воззрений нередко привносит в познавательный процесс элемент потрясения. Гельвеций писал по этому поводу: "Заблуждение подобно мине, к которой поднесен фитиль. Люди не подозревают о его присутствии, пока оно не произведет свое действие".340
Избежать заблуждений в процессе познания действительности - труднейшая задача. Свое стремление к истине человек прокладывает через заблуждения. Расстаться с ними бывает нелегко, а иногда и непросто. Характеризуя подобную ситуацию, Гельвеций привел такое сравнение: "Многие оказываются подверженными заблуждению, не имея возможности от него уклониться или достаточно быстро спастись бегством. Они похожи на тех людей, которые находятся на возвышенности на берегу отхлынувшего моря... вода скоро покроет бугорок, на который они взобрались".341
Заблуждения - неизбежные спутники постижения истины. Зачастую они содержат в себе некий ее компонент, и потому утверждение французского писателя Жюля Ромена о том, что нередко заблуждения - это та же истина, которой не дали еще созреть, имеет под собой определенные основания.
Истине в познании противостоит не только заблуждение, но и ложь. Она предполагает сознательное искажение действительности, целью которого является обман. Разумеется, что ложь не в состоянии вырасти в истину, служить ее достижению. Извращенная истина становится ложью. Ложь может основываться как на знании так и на незнании: она искажает знание или подменяет его незнанием.
Жан Жак Руссо так классифицировал варианты направленности лжи: "Лгать самому себе для своей выгоды - подделка; лгать для другого - подлог; лгать для того, чтоб повредить - клевета; это худший вид лжи".342 Оговоримся, что эти высказывания французского мыслителя не претендуют на научную строгость формулировок, а лишь свидетельствуют о многоликости лжи. Примечательно, что среди ее вариантов в процессе познания особенно распространены попытки искажения действительности путем различных недомолвок, сокрытия фактов и обстоятельств, умалчивания полученных в ходе исследования данных.
Отделить истину от заблуждения, оградить от последствий неточностей, просчетов, промахов познания, защитить от посягательств лжи позволяет ориентация на всесторонне обоснованный критерий истинности знания. История мировой философии знает многочисленные попытки выявить такой критерий. Правда известны и попытки вообще отрицать наличие такого критерия. К примеру, древнегреческий скептик Пиррон отрицал как саму истину, так и ее критерии. Некоторые представители имманентной школы в философии (разновидности кантианства), сложившейся в конце XIX - начале XX столетий, считали все истинным и, таким образом, снимали вопрос о критерии.
Приверженцы рационализма полагали, что критерием истины является само мышление в силу того, что оно ясно и отчетливо мыслит объект. Этот взгляд отстаивали Р.Декарт, Б.Спиноза, Г.Лейбниц, некоторые философы XYIII века. Такой подход имеет неразрывную связь с признанием самоочевидности первоначальных истин, с убеждением, что они постигаются с помощью интеллектуальной интуиции.
С точки зрения И.Канта, всеобщего материального критерия истины быть не может, ибо само существование такого критерия он считал противоречивым. В "Критике чистого разума" мыслитель подчеркивал, что "всеобщим критерием истины был бы лишь такой критерий, который был бы правилен в отношении всех знаний безразлично, каковы их предметы. Но так как, пользуясь таким критерием, мы отвлекаемся от всякого содержания знания (от отношения к его объекту), между тем как истина касается именно этого содержания, то отсюда ясно, что совершенно невозможно и нелепо спрашивать о признаке истинности этого содержания знаний и что достаточный и в то же время всеобщий признак истины не может быть дан. Так как выше мы уже называли содержания знания его материей, то мы можем выразить эту мысль следующим образом: требовать всеобщего признака истинности знания в отношении материи нельзя, так как это требование заключает в себе противоречие".343
Кант признавал только формально - логический критерий истины как "согласие знания со всеобщим формальным законами рассудка и разума". В учении Канта показан "субъективный характер истины", что, по мнению мыслителя, сделало невозможным наличие всеобщего критерия истины.
В.С.Соловьев считал центральным в установлении истины моральный аспект: ее критерий (мерило) предполагает добросовестную работу мышления. Он полагал, что "мерило истины переносится из внешнего мира в самого познающего субъекта, основанием истины признается не природа вещей и явлений, а разум человека "344. Соловьев подчеркивал: "в мериле истины заключается понятие добросовестности: настоящее философское мышление должно быть добросовестным исканием достоверной истины до конца".345
Согласно взглядом немецкого неокантианца Э.Кассирера критерием истины является внутренняя непротиворечивость самого мышления. Представители конвенционализма, (А.Пуанкаре, К.Айдукевич, Р.Кар-нап), считавшие, что в основе научных теорий лежит соглашение (конвенция) между ученым, и их выбор обусловлен соображениями удобства, простоты, увидели критерий истины в формально - логической согласованности суждений науки с этими соглашениями (исходными или позднее введенными).
Сторонники сенсуалистического направления в теории познания, придерживавшиеся субъективно - идеалистических позиций, истолковывали критерий истины либо как непосредственную очевидность ощущений (Аристипп, а в Новое время отчасти Д.Беркли), либо как согласованность понятий и суждений с чувственными данными (Д.Юм). Вариацией этого подхода стали взгляды родоначальников позитивизма О.Конта и Р.Спен-сера.
Названные воззрения были развиты в XX столетии неопозитивистами при истолковании принципа верификации или верифицируемости (от лат. verus-истинный, и facio- делаю). Верифицируемость (верификация) представляет собой процесс установления истинности научных утверждений в результате их эмпирической проверки. Согласно указанному принципу, всякое научное осмысленное утверждение может быть сведено к совокупности так называемых протокольных предложений, образующих эмпирический базис науки. Они фиксируют данные "чистого опыта" и выступают в качестве функций истинности "элементарных утверждений исчисления высказываний". Истинность протокольных предложений обосновывается наблюдением; считается, если она установлена, то в ней трудно сомневаться.
Видный представитель логического позитивизма Б.Рассел, характеризуя процесс установления истинности научных утверждений, сделал такие пояснения: "Для верифицируемости высказывания недостаточно того, чтобы оно было истинным; кроме того, оно должно быть таким, чтобы его истинность можно было обнаружить. Таким образом, верифицируемость зависит от нашей способности приобретать знания, а не только от объективной истинности"346. Как видим, проверка научных положений на истинность при такой точке зрения напрямую связывается с познавательными способностями человека.
В ходе развития логического позитивизма наряду с признанием верификации критерием истинности суждений проявилась также трактовка такого критерия на базе принципа взаимосогласованности предложений, в системе друг с другом, с принятыми законами логики (О. Нейрат, К.Г. Гемпель, Р. Карнап). Базисом науки стали рассматриваться не факты, а предложения.
История философии знает и понимание истины как пользы, что предполагает признание полезности объекта или процесса как показателя истинности воззрений, характеризующих их. Такая точка зрения характерна для прагматизма - учения, определяющего значимость знания его практическими последствиями. Один из основоположников прагматизма американский философ Уильям Джеймс(1842-1910) считал, что значение понятий, идей и теорий, заключаясь в их практических последствиях, позволяет судить об истине как об успешности или полезности их применения в опыте. Словом, показатель истинности знаний он усмотрел в их способности быть полезными для достижения той или иной цели.
Конечно же истина приносит или же может принести людям пользу, но это еще не означает, что все полезное истинно. Пользу способно, ведь кому-то приносить и ложь, что может относиться даже к определенным группам людей. Отождествление истины и пользы нельзя признать состоятельным, как и попытки рассматривать полезность как свидетельство истинности.
Понимание практики как критерия истины зародилось в философии Гегеля. Немецкий мыслитель полагал, что "истина есть соответствие мышления предмету, и для того чтобы создать такое соответствие ? ибо само по себе оно не дано как нечто наличное - мышление должно подчиняться предмету, сообразоваться с ним"347
Причем, речь у Гегеля идет об истине как о соответствии понятия (в качестве формы мышления) предмету. Значение практики для решения проблем истины как совпадения (тождества) человеческого понятия с идеальной структурой мироздания мыслитель увидел в доказательстве соответствия между ними. Он считал, что человек, создавая предмет, сообразующийся с понятием, тем самым и доказывает соответствие понятия его предмету, т.е. абсолютному духу. Происходит повторение акта божественного творения мира абсолютным духом, идеей, мировым разумом.
Исследование роли практики в познании и, в частности, ее участия в нем как критерия истины было предпринято в марксизме. Об особенностях проверки истины практикой речь уже шла в предыдущем разделе учебника. Уточним лишь общую специфику подхода к практике как к критерию истины. Этот подход реализует такую основополагающую идею: для того, чтобы сравнить имеющийся образ с самим объектом, необходимо практически воздействовать на этот объект. В случае обнаружения изменений в нем, которые мы прогнозировали, можно считать исходные представления истинными. Если же мы будем исходить из ошибочных представлений об объекте, то не сможем получить на практике те, результаты, которые предполагали. В итоге, наши представления об объекте придется пересмотреть, признав их полную или частичную несостоятельность.
Разумеется, что такой общий подход имеет широкое разнообразие своих проявлений. Разработка многочисленных вопросов, связанных с удостоверением истины, происходит в рамках теории познания.
Процесс познания формирует знания людей, на основе которых возникает цели и мотивы человеческих действий. Это - общественно - исторический процесс творческой деятельности людей, вершиной которого является постижение истины.

Глава YIII. МЕТОДЫ НАУЧНОГО ПОЗНАНИЯ

YIII.I ПОНЯТИЯ МЕТОДА И МЕТОДОЛОГИИ.
КЛАССИФИКАЦИЯ МЕТОДОВ НАУЧНОГО ПОЗНАНИЯ

Понятие метод (от греческого слова "методос" - путь к чему-либо) означает совокупность приемов и операций практического и теоретического освоения действительности.
Метод вооружает человека системой принципов, требований, правил, руководствуясь которыми он может достичь намеченной цели. Владение методом означает для человека знание того, каким образом, в какой последовательности совершать те или иные действия для решения тех или иных задач, и умение применять это знание на практике.
Учение о методе начало развиваться еще в науке Нового времени. Ее представители считали правильный метод ориентиром в движении к надежному, истинному знанию. Так, видный философ XYII века Ф.Бэкон сравнивал метод познания с фонарем, освещающим дорогу путнику, идущему в темноте. А другой известный ученый и философ этого же периода Р.Декарт изложил свое понимание метода следующим образом: "Под методом, - писал он, - я разумею точные и простые правила, строгое соблюдение которых... без лишней траты умственных сил, но постепенно и непрерывно увеличивая знания, способствует тому, что ум достигает истинного познания всего, что ему доступно".348
Существует целая область знания, которая специально занимается изучением методов и которую принято именовать методологией. Методология дословно означает "учение о методах" (ибо происходит этот термин от двух греческих слов: "методос" - метод и "логос" - учение). Изучая закономерности человеческой познавательной деятельности, методология вырабатывает на этой основе методы ее осуществления. Важнейшей задачей методологии является изучение происхождения, сущности, эффективности и других характеристик методов познания.
Методы научного познания принято подразделять по степени их общности, т.е. по широте применимости в процессе научного исследования.
Всеобщих методов в истории познания известно два: диалектический и метафизический. Это общефилософские методы. Метафизический метод с середины XIX века начал все больше и больше вытесняться из естествознания диалектическим методом.
Вторую группу методов познания составляют общенаучные методы, которые используются в самых различных областях науки, т.е. имеют весьма широкий, междисциплинарный спектр применения. Классификация общенаучных методов тесно связана с понятием уровней научного познания.
Различают два уровня научного познания: эмпирический и теоретический. Одни общенаучные методы применяются только на эмпирическом уровне (наблюдение, эксперимент, измерение), другие - только на теоретическом (идеализация, формализация), а некоторые (например, моделирование) - как на эмпирическом, так и на теоретическом уровнях.
Эмпирический уровень научного познания характеризуется непосредственным исследованием реально существующих, чувственно воспринимаемых объектов. На этом уровне осуществляется процесс накопления информации об исследуемых объектах, явлениях путем проведения наблюдений, выполнения разнообразных измерений, поставки экспериментов. Здесь производится также первичная систематизация получаемых фактических данных в виде таблиц, схем, графиков и т.п. Кроме того, уже на втором уровне научного познания - как следствие обобщения научных фактов - возможно формулирование некоторых эмпирических закономерностей.
Теоретический уровень научного исследования осуществляется на рациональной (логической) ступени познания. На данном уровне происходит раскрытие наиболее глубоких существенных сторон, связей, закономерностей, присущих изучаемым объектам, явлениям. Теоретический уровень - более высокая ступень в научном познании. Результатами теоретического познания становятся гипотезы, теории, законы.
Выделяя в научном исследовании указанные два различных уровня, не следует, однако, их отрывать друг от друга и противопоставлять. Ведь эмпирический и теоретический уровни познания взаимосвязаны между собой. Эмпирический уровень выступает в качестве основы, фундамента теоретического. Гипотезы и теории формируются в процессе теоретического осмысления научных фактов, статистических данных, получаемых на эмпирическом уровне. К тому же теоретическое мышление неизбежно опирается на чувственно-наглядные образы (в том числе схемы, графики и т.п.), с которыми имеет дело эмпирический уровень исследования.
В свою очередь, эмпирический уровень научного познания не может существовать без достижений теоретического уровня. Эмпирическое исследование обычно опирается на определенную теоретическую конструкцию, которая определяет направление этого исследования, обуславливает и обосновывает применяемые при этом методы.
К третьей группе методов научного познания относятся методы, используемые только в рамках исследований какой-то конкретной науки или какого-то конкретного явления. Такие методы именуются частнонаучными. Каждая частная наука (биология, химия, геология и т.д.) имеет свои специфические методы исследования.
При этом частнонаучные методы, как правило, содержат в различных сочетаниях те или иные общенаучные методы познания. В частнонаучных методах могут присутствовать наблюдения, измерения, индуктивные или дедуктивные умозаключения и т.д. Характер их сочетания и использования находится в зависимости от условий исследования, природы изучаемых объектов. Таким образом, частнонаучные методы не оторваны от общенаучных. Они тесно связаны с ними, включают в себя специфическое применение общенаучных познавательных приемов для изучения конкретной области объективного мира.
Частнонаучные методы связаны и со всеобщим, диалектическим методом, который как бы преломляется через них. Например, всеобщий диалектический принцип развития проявился в биологии в виде открытого Ч.Дарвином естественноисторического закона эволюции животных и растительных видов.
К сказанному остается добавить, что любой метод сам по себе еще не предопределяет успеха в познании тех или иных сторон материальной действительности. Важно еще умение правильно применять научный метод в процессе познания. Если воспользоваться образным сравнением академика П.Л.Капицы, то научный метод "как бы является скрипкой Страдивариуса, самой совершенной из скрипок, но чтобы на ней играть, нужно быть музыкантом и знать музыку. Без этого она будет также фальшивить, как и обычная скрипка".349







YIII.2. ПРИНЦИПЫ ДИАЛЕКТИЧЕСКОГО МЕТОДА, ИХ ПРИМЕНЕНИЕ В НАУЧНОМ ПОЗНАНИИ.

YIII.2.1.Принцип всесторонности рассмотрения изучаемых
объектов. Комплексный подход в познании

Одно из важных требований диалектического метода состоит в том, чтобы изучать объект познания со всех сторон, стремиться к выявлению и изучению как можно большего числа (из бесконечного множества) его свойств, связей, отношений. Современные исследования во многих областях науки все больше требуют учета возрастающего числа фактических данных, параметров, связей, и т.п. Эту задачу становится все труднее решать без привлечения информационной мощи новейшей компьютерной техники.
Принцип всесторонности в современном научном исследовании реализуется в виде комплексного подхода к объектам познания. Последний позволяет учесть множественность свойств, сторон, отношений и т.п. изучаемых предметов, явлений. Данный подход лежит в основе комплексных, междисциплинарных исследований, позволяющих "свести во едино" многосторонние исследования, объединить полученные разными методами результаты. Именно этот подход привел к идее создания научных коллективов, состоящих из специалистов различного профиля и реализующих требование комплексности при решении тех или иных проблем.
В последние десятилетия XX века сформировались комплексные научно-технические дисциплины, которые являются следствием сложных междисциплинарных процессов, происходящих в сфере технических наук. "Современные комплексные научно-технические дисциплины и исследования, являются реальностью современной науки. Однако они не укладываются в традиционные организационные формы и методологические стандарты. Именно в сфере этих исследований и дисциплин осуществляется сейчас практическое "внутреннее" взаимодействие общественных, естественных и технических наук... Кроме того, в них происходит синтез исследовательской и проектной ориентации и формируется единая исследовательски-проектная установка (на комплексное исследование и системное проектирование) в процессе решения комплексных научно-технических проблем и задач. Такие исследования (к которым, например, относятся исследования в области искусственного интеллекта) требуют особой организационной поддержки и поиска новых организационных форм науки (например, по типу временных научных коллективов и проблемных групп). Однако, к сожалению, их развитие затрудняется именно в силу их нетрадиционности, отсутствия в массовом (а иногда и профессиональном) сознании четкого представления об их месте в системе современной науки и техники, косности и негибкости существующей бюрократической структуры науки".350
Таким образом, комплексный подход в современном научном познании, предполагая всесторонность изучения объектов, явлений, ориентирует на преодоление дисциплинарной (а иногда и ведомственной) разобщенности научного поиска, требует формирования новых коллективных способов организации науки.
Ныне комплексность (как один из важных аспектов диалектической методологии) является составным элементом современного глобального мышления. Основанные на нем поиски решения глобальных проблем современности требуют научно обоснованного (и политически взвешенного) комплексного подхода.

YIII.2.2.Принцип рассмотрения во взаимосвязи.
Системное познание

Проблема учета связей исследуемой вещи с другими вещами занимает важное место в диалектическом методе познания, отличая его от метафизического. Метафизичность мышления многих ученых-естествоиспытателей, игнорировавших в своих исследованиях реальные взаимосвязи, существующие между объектами материального мира, породила в свое время немало трудностей в научном познании. Преодолеть эти трудности помог начавшийся в ХIX в. переход от метафизики к диалектике, "...рассматривающей вещи не в их изолированности, а в их взаимной связи".351
Прогресс научного познания уже в XIX веке, а тем более в ХХ столетии показал, что любой ученый - в какой бы области знания он ни работал - неизбежно потерпит неудачу в исследовании, если будет рассматривать изучаемый объект вне связи с другими объектами, явлениями или если будет игнорировать характер взаимосвязей его элементов. В последнем случае окажется невозможным понять и изучить материальный объект в его целостности, как систему.
Система - это всегда некоторая целостность, представляющая собой совокупность элементов, функциональные свойства и возможные состояния которой обусловлены не только составом, строением и т.п. составляющих ее элементов, но и характером их взаимных связей. Следует заметить, что понятие "система" означает более сложное образование, более высокий уровень интеграции элементов, по сравнению с понятием "комплекс".
Под комплексом "...понимается простое объединение элементов в
некоторую совокупность или множество по некоторому общему признаку... Причем комплексность можно рассматривать как начальную форму синтеза. Следующая форма интеграции - это упорядоченность. Нарастание связей ведет к новой качественной форме интеграции, когда получается хорошо организованное (органическое) множество, образующее целостное единство, которое мы называем системой и которое выступает наиболее совершенной формой синтеза объединяемых компонентов".352
Для изучения объекта как системы требуется и особый, системный подход к его познанию. Последний должен учитывать качественное своеобразие системы по отношению к своим элементам (т.е. что она - как целостность - обладает свойствами, которых нет у составляющих ее элементов).
При этом следует иметь в виду, что "... хотя свойства системы в целом не могут быть сведены к свойствам элементов, они могут быть объяснены в своем происхождении, в своем внутреннем механизме, в способах своего функционирования на основе учета свойств элементов системы и характера их взаимосвязи и взаимообусловленности. В этом заключена методологическая суть системного подхода. В противном случае - если бы между свойствами элементов и характером их взаимосвязи, с одной стороны, и свойствами целого, с другой стороны, не было связи, не было бы никакого научного смысла в рассмотрении системы именно как системы, то есть как совокупности элементов с определенными свойствами. Тогда пришлось бы систему рассматривать просто как вещь, обладающую свойствами безотносительно к свойствам элементов и структуре системы".353
Распространение системного подхода в науке было связано с усложнением объектов исследования и с переходом от метафизико-механистической методологии к диалектической. Симптомы исчерпания познавательного потенциала метафизико-механистической методологии, ориентировавшийся на сведение сложного к отдельным связям и элементам, появились еще в ХIX a., a ia ?oaa?a XIX и ХХ в.в. кризис такой методологии обнаружился уже совершенно отчетливо.
В ХХ веке "ученые оказались перед лицом принципиально новых по сравнению с классическим естествознанием объектов исследования - перед сложноорганизованными , целостными объектами. Присущие этим объектам специфические закономерности ставили перед наукой задачу создания соответствующих познавательных средств, которые открыли бы возможность конкретно-научного решения проблем целостности применительно к тому или иному классу объектов действительности. Результатом попыток решения этих проблем явилась разработка методов системного анализа, во многом определяющих стиль современного научного мышления".354
YIII.2.3.Принцип детерминизма. Динамические и статистические закономерности.
Недопустимость индетерминизма в науке

Детерминизм - (от лат.determino - определяю) - это философское учение об объективной закономерной взаимосвязи и взаимообусловленности явлений материального и духовного мира. Основу данного учения составляет положение о существовании причинности, т.е. такой связи явлений, в которой одно явление (причина) при определенных условиях с необходимостью порождает другое явление (следствие). Современный детерминизм предполагает наличие разнообразных объективно существующих форм взаимосвязи явлений. Но все эти формы в конечном счете складываются на основе всеобще действующей причинности, вне которой не существует ни одно явление действительности.
Идея о том, что все существующее возникает или уничтожается в результате действия определенных причин зародилась в глубокой древности при первых попытках осмыслить связь и взаимозависимость вещей. Представители материалистического направления в философии в трактовке детерминизма исходили из того, что все формы связей вещей, в том числе и причинно-следственные связи, свойственны самой реальности и что каждое явление причинно обусловлено. В древнегреческой философии материалистическое понимание детерминизма отстаивали Гераклит, Демокрит, Эпикур. Для материалистической философии Нового времени принцип детерминизма явился важной опорой в борьбе против средневекового схоластического мировоззрения. В трудах Галилея, Бэкона, Гоббса, Декарта, Спинозы было обосновано положение о том, что при изучении природы надо искать действующие причины и что "истинное знание есть знание посредством причин" (Ф.Бэкон). Детерминизм Нового времени помог создать методологическую почву для расцвета естественных наук.
Вместе с тем, это учение страдало исторической ограниченностью, выразившейся в метафизической трактовке детерминизма, в отождествлении его со связями явлений, подчиняющимся лишь принципам механики, в непонимании качественного своеобразия закономерностей более высоких форм движения.
Классическая наука Нового времени признавала только закономерную связь между состояниями материальных систем, т.е. считалось, что за данным состоянием всегда следует только одно, строго определенное состояние. Исходя из этого уровня развития науки, французский ученый Пьер Лаплас сформулировал принцип, согласно которому в мире существует только однозначная, динамическая связь состояний. Эта связь носит механический характер и подчиняется законам классической механики. Предпосылкой лапласовского вывода был взгляд на мир как на замкнутую систему, поведение которой можно, зная исходные условия, однозначно определить в любой момент времени. С позиций подобного механического детерминизма (получившего в истории науки и философии наименование лапласовского) значения координат и импульсов всех частиц Вселенной в данный момент времени совершенно однозначно определяет их состояние в любой прошедший или будущий момент времени. Такой подход означал признание лишь динамических закономерностей, которые длительное время лежали в основе научного и философского (метафизико-механистического) миропонимания. Динамическая закономерность есть форма причинной связи, при которой данное состояние системы однозначно определяет все ее последующие состояния, в силу чего знание начальных условий дает возможность точно предсказать дальнейшие состояния системы.
Появление материалистической диалектики и последующий прогресс науки (прежде всего, рождение квантовой механики) привели к отказу от лапласовского детерминизма при описании микроявлений. Оказалось, что между микрочастицами действует вероятностная (статистическая) связь, т.е. за данным состоянием системы могут следовать не строго определенные, а самые различные состояния, причем вероятность (степень возможности) появления нового состояния определяется уже не динамическими, а статистическими закономерностями. Статистическая закономерность - это форма причинной связи, при которой данное состояние системы определяет ее последующее состояние не однозначно, а лишь с определенной вероятностью, являющейся мерой возможности реализации заложенных в прошлом тенденций изменения.
Динамическая и статистическая закономерности являются различными формами проявления закономерной связи между предшествующими и последующими состояниями материальных систем.
Динамические закономерности действуют в автономных, мало зависящих от внешних воздействий системах с относительно небольшим числом элементов (такая закономерность определяет, например, движение планет в Солнечной системе). Статистические же закономерности действуют во всех неавтономных, зависящих от постоянно меняющихся внешних условий системах с очень большим количеством элементов (таковыми являются например, биологические системы).
Альтернативой детерминизму выступает индетерминизм -концепция, которая либо отвергает причинность вообще, либо отрицает ее всеобщий характер. Известный английский философ XYIII в. Д.Юм считал, например, что причинность в объективном мире не существует, что она представляет собой привычку человека связывать свои ощущения определенным образом. Споры вокруг принципа детерминизма продолжались и в последующие столетия. Сторонники индетерминизма утверждали, что к определенным областям (например, волевым действиям, процессам, происходящим в микромире) принцип причинной обусловленности неприменим. Когда классическая физика ХХ века столкнулась с тем обстоятельством, что микрообъект не может находиться в состоянии, в котором он имел бы одновременно совершенно строго определенные координату и импульс, некоторыми учеными и философами был сделан вывод, что будто бы в микромире принцип детерминизма теряет силу. В действительности же оказался непригодным старый механический детерминизм.
В целом прогресс научного познания показал, что методологические трудности, с которыми сталкиваются исследователи в различных отраслях знания, могут быть преодолены только на основе принципа детерминизма в его диалектико-материалистическом понимании. И хотя в ходе развития науки неоднократно возникали трудности в проведении идей детерминизма и появлялись течения, отрицающие детерминизм, в конце концов всегда оказывалось, что все действительные успехи науки были неразрывно связаны с его торжеством. Каждая из таких трудностей фактически означала не крах детерминизма, а ограниченную применимость тех или иных ранее известных форм причинной обусловленности явлений.

YIII.2.4.Принцип изучения в развитии.
Исторический и логический подходы в познании

Принцип изучения объектов в их развитии является одним из важнейших принципов диалектического метода познания. В этом состоит одно из принципиальных отличий диалектического метода от метафизического. Мы не получим истинного знания, если будем изучать вещь в мертвом, застывшем состоянии, если будем игнорировать такой важнейший аспект ее бытия, как развитие. Только изучив прошлое интересующего нас объекта, историю его возникновения и формирования, можно понять его нынешнее состояние, а также предсказать его будущее.
Неисторический подход в науке часто мешал получению важных научных результатов. Такой подход, например, в изучении живой природы длительное время препятствовал решению вопроса о возникновении нынешних видов растений и животных. Естествоиспытатели XYIII в. полагали, что органические виды качественно не меняются со временем, а их количество во все времена остается одним и тем же. Изучение существующих представителей растительного и животного мира без учета их исторического прошлого, хотя и давало определенные положительные результаты, (в плане, например, их систематизации) не позволяло, однако, решить проблему органических видов.
Отдельные попытки рассматривать объекты окружающей природы в их развитии не встречали поддержки в науке XYIII в. благодаря господству в ней метафизических воззрений. Так, уже упоминавшаяся ранее гипотеза Канта об историческом развитии Солнечной системы не было понята его современниками. И только в XIX в. необходимость изучения объектов с учетом их изменения, развития стала постепенно овладевать умами естествоиспытателей.
Принцип изучения объекта в развитии может реализоваться в познании двумя подходами: историческим и логическим (или, точнее сказать, логико-историческим).
При историческом подходе история объекта воспроизводится в точности, во всей ее многогранности, с учетом всех деталей, событий, включая и всякого рода случайные отклонения, "зигзаги" в развитии. Такой подход применяется при подробном, доскональном изучении человеческой истории, при наблюдениях, например, за развитием каких-то растений, живых организмов (с соответствующими описаниями этих наблюдений во всех подробностях) и т.д.
При логическом подходе также воспроизводится история объекта, но при этом она подвергается определенным логическим преобразованиям: обрабатывается теоретическим мышлением с выделением общего, существенного и освобождается в то же время от всего случайного, несущественного, наносного, мешающего выявлению закономерности развития изучаемого объекта.355
Такой подход в естествознании XIX века был успешно (хотя и стихийно) реализован Ч.Дарвиным. У него впервые логический процесс познания органического мира исходил из исторического процесса развития этого мира, что позволило научно решить вопрос о возникновении и эволюции видов растений и животных.
Выбор того или иного - исторического или логического - подхода в познании обусловливается природой изучаемого объекта, целями исследования и другими обстоятельствами. В то же время в реальном процессе познания оба указанных подхода тесно взаимосвязаны. Исторический подход не обходится без какого-то логического осмысления фактов истории развития изучаемого объекта. Логический же анализ развития объекта не противоречит его подлинной истории, исходит из нее.
Эту взаимосвязь исторического и логического подходов в познании особо подчеркивал Ф.Энгельс. "... Логический метод, - писал он, - ... в сущности является не чем иным, как тем же историческим методом, только освобожденным от исторической формы и от мешающих случайностей. С чего начинается история, с того же должен начинаться и ход мыслей, и его дальнейшее движение будет представлять собой не что иное, как отражение исторического процесса в абстрактной и теоретически последовательной форме; отражение исправленное, но исправленное соответственно законам, которые дает сам действительный исторический процесс...".356
Логико-исторический подход, опирающийся на мощь теоретического мышления, позволяет исследователю достичь логически реконструированного, обобщенного отражения исторического развития изучаемого объекта. А это ведет к получению важных научных результатов.

YIII.3. ОБЩЕНАУЧНЫЕ МЕТОДЫ
ЭМПИРИЧЕСКОГО ПОЗНАНИЯ

YIII.3.1.Научное наблюдение

Наблюдение есть чувственное преимущественно-визуальное отражение предметов и явлений внешнего мира. Это - исходный метод эмпирического познания, позволяющий получить некоторую первичную информацию об объектах окружающей действительности.
Научное наблюдение (в отличие от обыденных, повседневных наблюдений) характеризуется рядом особенностей:
- целенаправленностью (наблюдение должно вестись для решения поставленной задачи исследования, а внимание наблюдателя фиксироваться только на явлениях, связанных с этой задачей );
- планомерностью (наблюдение должно проводиться строго по плану, составленному исходя из задачи исследования);
- активностью (исследователь должен активно искать, выделять нуж-ные ему моменты в наблюдаемом явлении, привлекая для этого свои знания и опыт, используя различные технические средства наблюдения).
Научные наблюдения всегда сопровождаются описанием объекта познания. Последнее необходимо для фиксирования тех свойств, сторон изучаемого объекта, которые составляют предмет исследования. Описания результатов наблюдений образуют эмпирический базис науки, опираясь на который исследователи создают эмпирические обобщения, сравнивают изучаемые объекты по тем или иным параметрам, проводят классификацию их по каким-то свойствам, характеристикам, выясняют последовательность этапов их становления и развития.
Почти каждая наука проходит указанную первоначальную, "описательную" стадию развития. При этом, как подчеркивается в одной из работ, касающихся этого вопроса, "основные требования, которые предъявляются к научному описанию, направлены на то, чтобы оно было возможно более полным, точным и объективным. Описание должно давать достоверную и адекватную картину самого объекта, точно отображать изучаемые явления. Важно, чтобы понятия, используемые для описания, всегда имели четкий и однозначный смысл. При развитии науки, изменении ее основ преобразуются средства описания, часто создается новая система понятий".357
Наблюдение как метод познания более или менее удовлетворяло потребности наук, находившихся на описательно-эмпирической ступени развития. Дальнейший прогресс научного познания был связан с переходом многих наук к следующей, более высокой ступени развития, на которой наблюдения дополнялись экспериментальными исследованиями, предполагающими целенаправленное воздействие на изучаемые объекты.
Что касается наблюдений, то в них отсутствует деятельность, направленная на преобразование, изменение объектов познания. Это обусловливается рядом обстоятельств: недоступностью этих объектов для практического воздействия ( например, наблюдение удаленных космических объектов), нежелательностью, исходя из целей исследования, вмешательства в наблюдаемый процесс ( фенологические, психологические и др. наблюдения), отсутствием технических, энергетических, финансовых и иных возможностей постановки экспериментальных исследований объектов познания.
По способу проведения наблюдения могут быть непосредственными и опосредованными.
При непосредственных наблюдениях те или иные свойства, стороны объекта отражаются, воспринимаются органами чувств человека. Такого рода наблюдения дали немало полезного в истории науки. Известно, например, что наблюдения положения планет и звезд на небе, проводившиеся в течение более двадцати лет Тихо Браге с непревзойденной для невооруженного глаза точностью, явились эмпирической основой для открытия Кеплером его знаменитых законов.
В настоящее время непосредственное визуальное наблюдение широко используется в космических исследованиях, как важный (а иногда и незаменимый) метод научного познания. Визуальные наблюдения с борта пилотируемой орбитальной станции - наиболее простой и весьма эффективный метод исследования параметров атмосферы, поверхности суши и океана из космоса в видимом диапазоне. "С орбиты искусственного спутника Земли глаз человека может уверенно определить границы облачного покрова, типы облаков, границы выноса мутных речных вод в море, просмотреть рельеф дна на мелководье, определить характеристики океанических вихрей и пылевых бурь размером несколько сот километров, различать типы планктона и т.п. Комплексное восприятие наблюдаемых явлений..., избирательная способность человеческого зрения и логический анализ результатов наблюдений - это те уникальные свойства метода визуальных наблюдений, которыми не обладают никакой набор аппаратуры".358
"Возможности визуального метода наблюдений существенно увеличиваются, если использовать инструменты, расширяющие границы человеческого зрения. Это могут быть бинокли, зрительные трубы, приборы ночного видения с оптико-электронным усилением света".359
Хотя непосредственное наблюдение продолжает играть немаловажную роль в современной науке, однако чаще всего научное наблюдение бывает опосредованным, т. е. проводится с использованием тех или иных технических средств. Появление и развитие таких средств во многом определило то громадное расширение возможностей метода наблюдений, которое произошло за последние четыре столетия.
Если, например, до начала XYII в. астрономы наблюдали за небесными телами невооруженным глазом, то изобретение Галилеем в 1608 году оптического телескопа подняло астрономические наблюдения на новую, гораздо более высокую ступень. А создание в наши дни рентгеновских телескопов и вывод их в космическое пространство на борту орбитальной станции (рентгеновские телескопы могут работать только за пределами земной атмосферы) позволило проводить наблюдения за такими объектами Вселенной (пульсары, квазары), которые никаким другим путем изучать было бы невозможно.
Подобно развитию технических средств дальних наблюдений, создание в XYII веке оптического микроскопа, а много позднее, уже в OO веке, и электронного микроскопа позволило исследователям наблюдать удивительный мир микрообъектов и микроявлений.
Развитие современного естествознания связано с повышением роли так называемых косвенных наблюдений. Так, объекты и явления, изучаемые ядерной физикой, не могут прямо наблюдаться ни с помощью органов чувств человека, ни с помощью самых совершенных приборов. То, что ученые наблюдают в процессе эмпирических исследований в атомной физике, - это не сами микрообъекты, а только результаты их воздействия на определенные объекты, являющиеся техническими средствами исследования. Например, при изучении свойств заряженных частиц с помощью камеры Вильсона эти частицы воспринимаются исследователем косвенно - по таким видимым их проявлениям, как образование треков, состоящих из множества капелек жидкости.
Косвенные наблюдения обязательно основываются на некоторых теоретических положениях, устанавливающих определенную связь (скажем, в виде математически выраженной функциональной зависимости) между наблюдаемыми и ненаблюдаемыми явлениями. Подчеркивая роль теории в процессе таких наблюдений, А.Эйнштейн в разговоре с В.Гейзенбергом заметил: " Можно ли наблюдать данное явление или нет - зависит от вашей теории. Именно теория должна установить, что можно наблюдать, а что нельзя".360
Вообще любые научные наблюдения, хотя они опираются в первую очередь на работу органов чувств, требуют в то же время участия и теоретического мышления. Исследователь, опираясь на свои знания, опыт, должен осознать чувственные восприятия и выразить их (описать) либо в понятиях обычного языка, либо - более строго и сокращенно - в определенных научных терминах, в каких-то графиках, таблицах, рисунках и т.п.
Наблюдения могут нередко играть важную эвристическую роль в научном познании. В процессе наблюдений могут быть открыты совершенно новые явления, позволяющие обосновать ту или иную научную гипотезу. Приведем лишь один пример из области истории космических исследований. Участники длительных экспедиций в космос на орбитальной станции "Салют-6" вели наблюдения Мирового океана, ибо над ним и даже в его глубинах формируется погода планеты. В результате этих наблюдений были обнаружены так называемые синоптические вихри. Последние представляют собой специфические образования в океане, размеры и цвет которых бывают различными. Некоторые из них имеют зеленоватую окраску, что характеризует подъем глубинных вод к поверхности, другие отличаются голубой окраской - здесь вода с поверхности уходит в глубину. Эти наблюдения позволили подтвердить гипотезу академика Г.И.Марчука, согласно которой в Мировом океане есть энергоактивные зоны, являющиеся своеобразными "генераторами погоды". Именно над такими аномалиями и начинается формирование циклонов.361
Для получения каких-то выводов об исследуемом явлении, для обнаружения чего-то существенного в нем зачастую требуется проведение весьма большого количества наблюдений. Например, для получения даже краткосрочного (до 7-10 суток) прогноза погоды необходимо проводить огромное число наблюдений за различными метеорологическими параметрами атмосферы. Такие наблюдения в современном мире осуществляют свыше 10 тыс. метеорологических станций, получающих необходимые данные в районе земной поверхности, и около 800 станций радиозондирования, собирающих данные во всей толще атмосферы. К этому надо добавить метеорологическую информацию, которая является результатом наблюдений, проводимых с оснащенных специальной аппаратурой морских судов и самолетов, беспилотных метеорологических спутников Земли и пилотируемых орбитальных станций. Весь этот обширный комплекс технических средств обеспечивает глобальные наблюдения за состоянием атмосферы, поверхности суши и океана с целью изучения тех физических процессов, которые определяют аномалии погоды на нашей планете.
Из всего вышесказанного следует, что наблюдение является весьма важным методом эмпирического познания, обеспечивающим сбор обширной информации об окружающем мире. Как показывает история науки, при правильном использовании этого метода он оказывается весьма плодотворным.
YIII.3.2.Эксперимент

Эксперимент - более сложный метод эмпирического познания по сравнению с наблюдением. Он предполагает активное, целенаправленное и строго контролируемое воздействие исследователя на изучаемый объект для выявления и изучения тех или иных сторон, свойств, связей. При этом экспериментатор может преобразовывать исследуемый объект, создавать искусственные условия его изучения, вмешиваться в естественное течение процессов.
Эксперимент включает в себя другие методы эмпирического исследования (наблюдения, измерения). В то же время он обладает рядом важных, присущих только ему особенностей.
Во-первых, эксперимент позволяет изучать объект в "очищенном" виде, т.е. устранять всякого рода побочные факторы, наслоения, затрудняющие процесс исследования. Например, проведение некоторых экспериментов требует специально оборудованных помещений, защищенных (экранированных) от внешних электромагнитных воздействий на изучаемый объект.
Во-вторых, в ходе эксперимента объект может быть поставлен в некоторые искусственные, в частности, экстремальные условия, т.е. изучаться при сверхнизких температурах, при чрезвычайно высоких давлениях или, наоборот, в вакууме, при огромных напряженностях электромагнитного поля и т.п. В таких искусственно созданных условиях удается обнаружить удивительные порой неожиданные свойства объектов и тем самым глубже постигать их сущность. . Очень интересными и многообещающими являются в этом плане космические эксперименты, позволяющие изучать объекты, явления в таких особых, необычных условиях (невесомость, глубокий вакуум), которые недостижимы в земных лабораториях.
В-третьих, изучая какой-либо процесс, экспериментатор может вмешиваться в него, активно влиять на его протекание. Как отмечал академик И.П.Павлов, "опыт как бы берет явления в свои руки и пускает в ход то одно, то другое и таким образом в искусственных, упрощенных комбинациях определяет истинную связь между явлениями. Иначе говоря, наблюдение собирает то, что ему предлагает природа, опыт же берет у природы то, что хочет".362
В-четвертых, важным достоинством многих экспериментов является их воспроизводимость. Это означает, что условия эксперимента, а соответственно и проводимые при этом наблюдения, измерения могут быть повторены столько раз, сколько это необходимо для получения достоверных результатов.
В истории науки известен, например, такой случай. Американский физик Шэнкланд, изучавший соударение фотонов с электронами, пришел к выводу о невыполнении закона сохранения энергии в элементарном акте соударения. Эти эксперименты вызвали сенсацию. Но ряд крупных физиков, в том числе А.Ф.Иоффе, отнеслись к ним скептически. Тогда Шэнкланд решил повторить свои эксперименты. Пытаясь воспроизвести свои прежние результаты, он нашел ошибку в методике экспериментирования. Выявилось, что при правильной постановке эксперимента закон сохранения энергии соблюдается и в указанном элементарном акте соударения. Так, благодаря воспроизводимости экспериментальных исследований, вторая работа Шэнкланда опровергла первую.
Подготовка и проведение эксперимента требуют соблюдения ряда условий. Так, научный эксперимент:
- никогда не ставится наобум, он предполагает наличие четко сформулированной цели исследования;
- не делается "вслепую", он всегда базируется на каких-то исходных теоретических положениях;
- не проводится беспланово, хаотически, предварительно исследователь намечает пути его проведения;
- требует определенного уровня развития технических средств познания, необходимого для его реализации;
- должен проводиться людьми, имеющими достаточно высокую квалификацию.
Только совокупность всех этих условий определяет успех в экспериментальных исследованиях.
В зависимости от характера проблем, решаемых в ходе экспериментов, последние обычно подразделяются на исследовательские и проверочные.
Исследовательские эксперименты дают возможность обнаружить у объекта новые, неизвестные свойства. Результатом такого эксперимента могут быть выводы, не вытекающие из имевшихся знаний об объекте исследования. Примером могут служить эксперименты, поставленные в лаборатории Э.Резерфорда, в ходе которых обнаружилось странное поведение альфа-частиц при бомбардировке ими золотой фольги: большинство частиц проходило сквозь фольгу, небольшое количество частиц отклонялось и рассеивалось, а некоторые частицы не просто отклонялись, а отскакивали обратно, как мяч от сетки. Такая экспериментальная картина, согласно расчетам, получалась в силу того, что вся масса атома сосредоточена в ядре, занимающем ничтожную часть его объема (отскакивали обратно альфа-частицы, соударявшиеся с ядром). Так исследовательский эксперимент, проведенный Резерфордом и его сотрудниками, привел к обнаружению ядра атома, а тем самым и к рождению ядерной физики.
Проверочные эксперименты служат для проверки, подтверждения тех или иных теоретических построений. Так, существование целого ряда элементарных частиц (позитрона, нейтрино и др.) было вначале предсказано теоретически, и лишь позднее они были обнаружены экспериментальным путем.
Проникновение человеческого познания в микромир потребовало проведения экспериментальных исследований, в которых нельзя было пренебречь воздействием прибора на объект (точнее сказать, микрообъект) познания. Из этого обстоятельства некоторые физики стали делать выводы, что, в отличие от классической механики, в квантовой механике эксперимент играет принципиально иную роль.
Но возмущающее влияние прибора не изменяет познавательной роли эксперимента в физике микромира. Приборы оказывают возмущающее действие на изучаемый объект и в классической физике, имеющий дело с макрообъектами, только их действие здесь очень мало, и им можно пренебречь. В сфере же материальной действительности, изучаемой квантовой механикой, прибор оказывает на частицу гораздо более существенное возмущающее влияние, которым пренебречь нельзя. Однако это влияние не означает, что свойства микрочастиц материи порождаются прибором по воле экспериментатора (как представлялось некоторым физикам). Необходимо отметить также, что возмущающее действие касается только количественной стороны микрочастицы - величины энергии, импульса, ее пространственной локализации. Качественная же специфика микрочастиц не претерпевает при возмущении никаких изменений: электрон остается электроном, протон - протоном и т.д.
Исходя из методики проведения и получаемых результатов, эксперименты можно разделить на качественные и количественные. Качественные эксперименты носят поисковый характер и не приводят к получению каких-либо количественных соотношений. Они позволяют лишь выявить действие тех или иных факторов на изучаемое явление. Количественные эксперименты направлены на установление точных количественных зависимостей в исследуемом явлении. В реальной практике экспериментального исследования оба указанных типа экспериментов реализуются, как правило, в виде последовательных этапов развития познания.
Как известно, связь между электрическими и магнитными явлениями была впервые открыта датским физиком Эрстедом в результате чисто качественного эксперимента (поместив магнитную стрелку компаса рядом с проводником, через который пропускался электрический ток, он обнаружил, что стрелка отклоняется от первоначального положения). После опубликования Эрстедом своего открытия последовали количественные эксперименты французских ученых Био и Савара, а также опыты Ампера, на основе которых была выведена соответствующая математическая формула.
Все эти качественные и количественные эмпирические исследования заложили основы учения об электромагнетизме.
В зависимости от области научного знания, в которой используется экспериментальный метод исследования, различают естественнонаучный, прикладной (в технических науках, сельскохозяйственной науке и т. д.) и социально-экономический эксперименты.
В конце XIX века, например, два видных ученых Г. Герц и А. С. Попов занимались экспериментальным изучением электромагнитных колебаний. Но Герц ставил перед собой лишь задачу экспериментальной проверки теоретических построений Максвелла. Практическое применение электромагнитных колебаний его не интересовало. Поэтому эксперименты Герца, в ходе которых были получены электромагнитные волны, предсказанные теорией Максвелла, следует рассматривать как естественнонаучные. Что же касается экспериментов А. С. Попова, то они имели четкую направленность (как практически использовались "волны Герца"?) и были экспериментами в области зарождающейся прикладной науки-радиотех-ники. Более того, Герц вообще не верил в возможность практического применения электромагнитных волн, не видел никакой связи между своими экспериментами и нуждами практики. Узнав о попытках практического использования электромагнитных волн, Герц даже написал в Дрезденскую палату коммерции, что исследования в этом направлении нужно запретить как бесполезные.363
Завершая рассмотрение экспериментального метода исследования, следует упомянуть об очень важной проблеме планирования эксперимента. Еще в первой половине ХХ столетия все экспериментальные исследования сводились к проведению так называемого однофакторного эксперимента, когда изменялся какой-то один фактор исследуемого процесса, а все остальные оставались неизменными. Но развитие науки настойчиво требовало исследования процессов, зависящих от множества меняющихся факторов. Использование в этом случае методики однофакторного эксперимента было бессмысленным, ибо требовало астрономического количества опытов.
В начале 20-х годов английский статистик Р. Фишер впервые разработал и доказал целесообразность метода одновременного варьирования всех факторов, влияющих на результаты экспериментальных исследований в области прикладных наук. Но лишь через три десятилетия эта работа Фишера нашла практическое применение. В 1951 году Бокс и Уилсон разработали метод, по которому исследователь должен ставить последовательные небольшие серии опытов, варьируя в каждой из этих серий по определенным правилам все факторы. Причем организуются указанные серии таким образом, чтобы после математической обработки предыдущей можно было бы выбрать (спланировать) условия проведения следующей серии, что в конечном итоге позволит выйти в область оптимума.
После упомянутой работы Бокса и Уилсона появился целый ряд работ на эту же тему, в которых предлагались и другие методики. Достигнутые успехи в теоретической разработке и практическом применении планирования эксперимента в научных исследованиях привели к появлению новой дисциплины - математической теории эксперимента. Эта теория направлена на решение задачи получения достоверного результата экспериментального исследования с минимальными затратами труда, времени и средств. В итоге достигается оптимизация работы экспериментатора при одновременном обеспечении высокого качества экспериментальных исследований. А "высокое качество эксперимента, - как подчеркивал академик П.Л.Капица, - является необходимым условием здорового развития науки".364

YIII.3.3.Измерение

Большинство научных экспериментов и наблюдений включает в себя проведение разнообразных измерений. Измерение - это процесс, заключающийся в определении количественных значений тех или иных свойств, сторон изучаемого объекта, явления с помощью специальных технических устройств.
Огромное значение измерений для науки отмечали многие видные ученые. Например, Д.И.Менделеев подчеркивал, что "наука начинается с тех пор, как начинают измерять". А известный английский физик В.Томсон (Кельвин) указывал на то, что "каждая вещь известна лишь в той степени, в какой ее можно измерить".365
Важной стороной процесса измерения является методика его проведения. Она представляет собой совокупность приемов, использующих определенные принципы и средства измерений. Под принципами измерений в данном случае имеются в виду какие-то явления, которые положены в основу измерений (например, измерение температуры с использованием термоэлектрического эффекта).
Наличие субъекта (исследователя), производящего измерения, не всегда является обязательным. Он может и не принимать непосредственного участия в процессе измерения, если измерительная процедура включена в работу автоматической информационно-измерительной системы. Последняя строится на базе электронно-вычислительной техники. Причем с появлением сравнительно недорогих микропроцессорных вычислительных устройств в измерительной технике стало возможным создание "интеллектуальных" приборов, в которых обработка данных измерений производится одновременно с чисто измерительными операциями.
Результат измерения получается в виде некоторого числа единиц измерения. Единица измерения - это эталон, с которым сравнивается измеряемая сторона объекта или явления (эталону присваивается числовое значение "1"). Существует множество единиц измерения, соответствующее множеству объектов, явлений, их свойств, сторон, связей, которые приходится измерять в процессе научного познания. При этом единицы измерения подразделяются на основные, выбираемые в качестве базисных при построении системы единиц, и производные, выводимые из других единиц с помощью каких-то математических соотношений.
Методика построения системы единиц как совокупности основных и производных была впервые предложена в 1832 году К.Гауссом. Он построил систему единиц, в которой за основу были приняты три произвольные, независимые друг от друга основные единицы: длины (миллиметр), массы (миллиграмм) и времени (секунда). Все остальные (производные) единицы можно было определить с помощью этих трех. В дальнейшем с развитием науки и техники появились и другие системы единиц физических величин, построенных по принципу, предложенному Гауссом. Они базировались на метрической системе мер, но отличались друг от друга основными единицами.
Кроме того, в физике появились так называемые естественные системы единиц. Их основные единицы определялись из законов природы (это исключало произвол человека при построении указанных систем). Примером может служить "естественная" система физических единиц, предложенная в свое время Максом Планком. В ее основу были положены "мировые постоянные"; скорость света в пустоте, постоянная тяготения, постоянная Больцмана и постоянная Планка. Исходя из них и приравняв их к "1", Планк получил ряд производных единиц (длины, массы, времени и температуры). Планк писал по поводу единиц предложенной им системы: "Эти величины сохраняют свое естественное значение, пока законы всемирного тяготения и распространения света в пустоте и два основных начала термодинамики останутся неизменными; они должны получаться одинаковыми , какими бы разумными существами и какими бы методами они ни определялись".366
Основное значение подобных "естественных" систем единиц (к ним относится также система атомных единиц Хартри и некоторые другие) состоит в существенном упрощении вида отдельных уравнений физики. Однако размеры единиц таких систем делают их малоудобными для практики. Кроме того, точность измерения основных единиц подобных систем, необходимая для установления всех производных единиц, еще далеко недостаточна. В силу указанных причин предложенные до сих пор "естественные" системы единиц не могут в настоящее время найти применения при решении вопроса об унификации единиц измерения.
Вопрос об обеспечении единообразия в измерении величин, отражающих те или иные явления материального мира, всегда был очень важным. Отсутствие такого единообразия порождало существенные трудности для научного познания. Например, до 1880 года включительно не существовало единство в измерении электрических величин: использовалось 15 различных единиц электрического сопротивления, 8 единиц электродвижущей силы, 5 единиц электрического тока и т.д. Сложившееся положение сильно затрудняло сопоставление результатов измерений и расчетов, выполненных различными исследователями. Остро ощущалось необходимость введения единой системы электрических единиц. Такая система была принята первым международным конгрессом по электричеству, состоявшимся в 1881 году.
В настоящее время в естествознании действует преимущественно Международная система единиц (СИ), принятая в 1960 году XI Генеральной конференцией по мерам и весам. Международная система единиц построена на базе семи основных (метр, килограмм, секунда, ампер, кельвин, кандела, моль) и двух дополнительных (радиан, стерадиан) единиц. С помощью специальной таблицы множителей и приставок можно образовывать кратные и дольные единицы (например, с помощью множителя 10-3 и приставки "милли" к наименованию любой из названных выше единиц измерения можно образовывать дольную единицу размером в одну тысячную от исходной).
Международная система единиц физических величин является наиболее совершенной и универсальной из всех существовавших до настоящего времени. Она охватывает физические величины механики, термодинамики, электродинамики и оптики, которые связаны между собой физическими законами.
Потребность в единой международной системе единиц измерения в условиях современной научно-технической революции очень велика. Поэтому такие международные организации, как ЮНЕСКО и международная организация законодательной метрологии, призвали государства, являющиеся членами этих организаций, принять вышеупомянутую Международную систему единиц и градуировать в этих единицах все измерительные приборы.
Существует несколько видов измерений. Исходя из характера зависимости измеряемой величины от времени, измерения разделяют на статические и динамические. При статических измерениях величина, которую мы измеряем, остается постоянной во времени (измерение размеров тел, постоянного давления и т.п.). К динамическим относятся такие измерения, в процессе которых измеряемая величина меняется во времени (измерение вибрации, пульсирующих давлений и т.п.).
По способу получения результатов различают измерения прямые и косвенные. В прямых измерениях искомое значение измеряемой величины получается путем непосредственного сравнения ее с эталоном или выдается измерительным прибором. При косвенном измерении искомую величину определяют на основании известной математической зависимости между этой величиной и другими величинами, получаемыми путем прямых измерений (например, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения). Косвенные измерения широко используются в тех случаях, когда искомую величину невозможно или слишком сложно измерить непосредственно или когда прямое измерение дает менее точный результат.
Технические возможности измерительных приборов в значительной мере отражают уровень развития науки. С современной точки зрения, приборы, использовавшиеся учеными - естествоиспытателями в XIX в. и в начале ХХ столетия, были весьма несовершенны. Тем не менее с помощью этих приборов ставились иногда блестящие эксперименты, оставившие заметный след в истории науки, открывались и изучались важные закономерности природы. Оценивая, например, значение известных измерений скорости света, проведенных американским физиком А.Майкельсоном, для последующего развития науки, академик С.И.Вавилов писал: "На почве его экспериментальных открытий и измерений выросла теория относительности, развилась и рафинировалась волновая оптика и спектроскопия и окрепла теоретическая астрофизика".367
С прогрессом науки продвигается вперед и измерительная техника. Наряду с совершенствованием существующих измерительных приборов, работающих на основе традиционных утвердившихся принципов (замена материалов, из которых сделаны детали прибора, внесение в его конструкцию отдельных изменений и т.д.), происходит переход на принципиально новые конструкции измерительных устройств, обусловленные новыми теоретическими предпосылками. В последнем случае создаются приборы, в которых находят реализацию новые научные достижения. Так, например, развитие квантовой физики существенно повысило возможности измерений с высокой степенью точности. Использование эффекта Мессбауэра позволяет создать прибор с разрешающей способностью порядка 10-13% измеряемой величины.
Хорошо развитое измерительное приборостроение, разнообразие методов и высокие характеристики средств измерения способствуют прогрессу в научных исследованиях. В свою очередь, решение научных проблем, как уже отмечалось выше, часто открывает новые пути совершенствования самих измерений.

YIII.4. IAUAIAO?IUA IAOIAU
OAI?AOE?ANEIAI IICIAIE?

YIII.4.1.Абстрагирование. Восхождение от
абстрактного к конкретному

Процесс познания всегда начинается с рассмотрения конкретных, чувственно воспринимаемых предметов и явлений, их внешних признаков, свойств, связей. Только в результате изучения чувственно-конкретного человек приходит к каким-то обобщенным представлениям, понятиям, к тем или иным теоретическим положениям, т.е. научным абстракциям. Получение этих абстракций связано со сложной абстрагирующей деятельностью мышления.
В процессе абстрагирования происходит отход (восхождение) от чувственно воспринимаемых конкретных объектов (со всеми их свойствами, сторонами и т.д.) к воспроизводимым в мышлении абстрактным представлениям о них. При этом чувственно-конкретное восприятие как бы "...испаряется до степени абстрактного определения".368 Абстрагирование, таким образом, заключается в мысленном отвлечении от каких-то - менее существенных - свойств, сторон, признаков изучаемого объекта с одновременным выделением, формированием одной или нескольких существенных сторон, свойств, признаков этого объекта. Результат, получаемый в процессе абстрагирования, именуют абстракцией (или используют термин "абстрактное" - в отличие от конкретного).
В научном познании широко применяются, например, абстракции отождествления и изолирующие абстракции. Абстракция отождествления представляет собой понятие, которое получается в результате отождествления некоторого множества предметов (при этом отвлекаются от целого ряда индивидуальных свойств, признаков данных предметов) и объединения их в особую группу. Примером может служить группировка всего множества растений и животных, обитающих на нашей планете, в особые виды, роды, отряды и т.д. Изолирующая абстракция получается путем выделения некоторых свойств, отношений, неразрывно связанных с предметами материального мира, в самостоятельные сущности ("устойчивость", "растворимость", "электропроводность" и т.д.).
Переход от чувственно-конкретного к абстрактному всегда связан с известным упрощением действительности. Вместе с тем, восходя от чувственно-конкретного к абстрактному, теоретическому, исследователь получает возможность глубже понять изучаемый объект, раскрыть его сущность.
Конечно, в истории науки имели место и ложные, неверные абстракции, не отражавшие ровным счетом ничего в объективном мире (эфир, теплород, жизненная сила, электрическая жидкость и т.п.). Использование подобных "мертвых абстракций" создавало лишь видимость объяснения наблюдаемых явлений. В действительности же никакого углубления познания в этом случае не происходило.
Развитие естествознания повлекло за собой открытие все новых и новых действительных сторон, свойств, связей объектов и явлений материального мира. Необходимым условием прогресса познания стало образование подлинно научных, "не вздорных" абстракций, которые позволили бы глубже познать сущность изучаемых явлений. Процесс перехода от чувственно-эмпирических, наглядных представлений об изучаемых явлениях к формированию определенных абстрактных, теоретических конструкций, отражающих сущность этих явлений, лежит в основе развития любой науки.
Это можно хорошо показать на примере развития учения об электричестве, в частности, прогресса в познании электромагнитных явлений. Вторая половина XIX века началась без особых успехов в теоретическом осмыслении многообразной сферы явлений, связанных с электричеством. Ф.Энгельс, отмечая "вездесущность электричества", проявляющегося в самых различных процессах природы, указывал в то же время на то, что "оно является именно той формой движения, насчет существа которой царит еще величайшая неясность". "В учении... об электричестве, - писал он, - мы имеем перед собой... какое-то неуверенное блуждание во мраке, не связанные друг с другом исследования и опыты многих отдельных ученых, атакующих неизвестную область вразброд, подобно орде кочевых наездников".369
Понадобился огромный теоретический талант Максвелла, который оттолкнулся от фарадеевских чувственно-наглядных, эмпирических представлений об электромагнитных явлениях, создал свою теорию электромагнитного поля, Максвелл придал идеям Фарадея теоретическую завершенность, ввел точное понятие "электромагнитное поле", сформулировал математические законы этого поля.
Поскольку конкретное (т.е. реальные объекты, процессы материального мира) есть совокупность множества свойств, сторон, внутренних и внешних связей и отношений, его невозможно познать во всем его многообразии, оставаясь на этапе чувственного познания, ограничиваясь им. Поэтому и возникает потребность в теоретическом осмыслении конкретного, т.е. восхождении от чувственно-конкретного к абстрактному.
Но формирование научных абстракций, общих теоретических положений не является конечной целью познания, а представляет собой только средство более глубокого, разностороннего познания конкретного. Поэтому необходимо дальнейшее движение (восхождение) познания от достигнутого абстрактного вновь к конкретному. Получаемое на этом этапе исследования знание о конкретном будет качественно иным по сравнению с тем, которое имелось на этапе чувственного познания. Другими словами, конкретное в начале процесса познания ( чувственно-конкретное, являющееся его исходным моментом) и конкретное, постигаемое в конце познавательного процесса (его называют логически-конкретным, подчеркивая роль абстрактного мышления в его постижении), коренным образом отличаются друг от друга.
Логически-конкретное есть теоретически воспроизведенное в мышлении исследователя конкретное во всем богатстве его содержания. Оно содержит в себе уже не только чувственно воспринимаемое, но и нечто скрытое, недоступное чувственному восприятию, нечто существенное, закономерное, постигнутое лишь с помощью теоретического мышления, с помощью определенных абстракций.
Понимание электромагнитных явлений (конкретного) после появления знаменитых уравнений Максвелла существенно расширилось и обогатилось. Из его математических абстракций вытекали важные выводы, касающиеся конкретных проявлений электромагнитного поля. Эти выводы свидетельствовали, что всякое изменение электрического поля вызывает появление поля магнитного, и, наоборот, что реально существуют электромагнитные волны (впоследствии экспериментально открытые Герцем), что скорость распространения их в пустоте равна скорости распространения в ней света (отсюда следовало, что свет имеет электромагнитную природу), что электромагнитная волна переносит определенную энергию, что при попадании на препятствие эта волна должна оказывать на него давление (которое впервые измерил русский физик П.Н.Лебедев, установивший, что оно совпадает с теоретическим значением, полученным Максвеллом), и т.д.
В результате этих новых данных науки оказалась существенно поколебленной прежняя механическая картина мира, фундамент которой заложил И.Ньютон. Представление об окружающем мире изменилось. Оно стало более многообразным, более богатым по содержанию.
Изложенное здесь восхождение от абстрактного к конкретному характеризует общую направленность научно-теоретического познания, имеющего целью переход от менее содержательного к более содержательному знанию. Другими словами, исследователь получает в результате целостную картину изучаемого объекта во всем богатстве его содержания.

YIII.4.2.Идеализация. Мысленный
эксперимент

Мыслительная деятельность исследователя в процессе научного познания включает в себя особый вид абстрагирования, который называют идеализацией. Идеализация представляет собой мысленное внесение определенных изменений в изучаемый объект в соответствии с целями исследований.
В результате таких изменений могут быть, например, исключены из рассмотрения какие-то свойства, стороны, признаки объектов. Так, широко распространенная в механике идеализация, именуемая материальной точкой, подразумевает тело, лишенное всяких размеров. Такой абстрактный объект, размерами которого пренебрегают, удобен при описании движения. Причем подобная абстракция позволяет заменить в исследовании самые различные реальные объекты: от молекул или атомов при решении многих задач статистической механики и до планет Солнечной системы при изучении, например, их движения вокруг Солнца.
Изменения объекта, достигаемые в процессе идеализации, могут производиться также и путем наделения его какими-то особыми свойствами, в реальной действительности неосуществимыми. Примером может служить введенная путем идеализации в физику абстракция, известная под названием абсолютно черного тела. Такое тело наделяется несуществующим в природе свойством поглощать абсолютно всю попадающую на него лучистую энергию, ничего не отражая и ничего не пропуская сквозь себя. Спектр излучения абсолютно черного тела является идеальным случаем, ибо на него не оказывает влияния природа вещества излучателя или состояние его поверхности. А если можно теоретически описать спектральное распределение плотности энергии излучения для идеального случая, то можно кое-что узнать и о процессе излучения вообще.
Указанная идеализация сыграла важную роль в прогрессе научного познания в области физики, ибо помогла выявить ошибочность некоторых существовавших во второй половине XIX века представлений. Эти представления, приложенные к исследованию абсолютно черного тела, приводили к парадоксальной ситуации.
Физики занялись проблемой излучения абсолютного черного тела в самом конце прошлого столетия. "Начав с предположений, основанных на законах классической термодинамики и оптики, они пытались вывести формулу энергетического спектра излучения. Эти попытки потерпели неудачу, так как привели к выводу, который стал известен как "ультрафиолетовая катастрофа". Из теории следовало, что абсолютно черное тело, нагретое до высоких температур, должно испускать бесконечно большое количество энергии в области высоких частот, т.е. в ультрафиолетовой области спектра и за ее пределами. В случае абсолютно черного тела теория предсказывала катастрофу, которая в действительности не имеет места".370
Проблемой расчета количества излучения, испускаемого идеальным излучателем - абсолютно черным телом, серьезно занялся Макс Планк, который работал над ней долгих четыре года. Наконец, в 1990 году ему удалось найти решение в виде формулы, которая правильно описывала спектральное распределение энергии излучения абсолютно черного тела. Так работа с идеализированным объектом помогла заложить основы квантовой теории, ознаменовавшей радикальный переворот в науке.
Целесообразность использования идеализации определяется следующими обстоятельствами.
Во-первых, "идеализация целесообразна тогда, когда подлежащие исследованию реальные объекты достаточно сложны для имеющихся средств теоретического, в частности математического, анализа, а по отношению к идеализированному случаю можно, приложив эти средства, построить и развить теорию, в определенных условиях и целях эффективную, для описания свойств и поведения этих реальных объектов. Последнее, в сущности, и удостоверяет плодотворность идеализации, отличает ее от бесплодной фантазии".371
Во-вторых, идеализацию целесообразно использовать в тех случаях, когда необходимо исключить некоторые свойства, связи исследуемого объекта, без которых он существовать не может, но которые затемняют существо протекающих в нем процессов. Сложный объект представляется как бы в "очищенном" виде, что облегчает его изучение.
На эту гносеологическую возможность идеализации обратил внимание Ф. Энгельс, который показал ее на примере исследования, проведенного Сади Карно: "Он изучил паровую машину, проанализировал ее, нашел, что в ней основной процесс не выступает в чистом виде, а заслонен всякого рода побочными процессами, устранил эти безразличные для главного процесса побочные обстоятельства и сконструировал идеальную паровую машину (или газовую машину), которую, правда, так же нельзя осуществить, как нельзя, например, осуществить геометрическую линию или геометрическую плоскость, но которая оказывает, по-своему, такие же услуги, как эти математические абстракции: она представляет рассматриваемый процесс в чистом, независимом, неискаженном виде".372
В-третьих, применение идеализации целесообразно тогда, когда исключаемые из рассмотрения свойства, стороны, связи изучаемого объекта не влияют в рамках данного исследования на его сущность. Выше уже упоминалось, например, о том, что абстракция материальной точки позволяет в некоторых случаях представлять самые различные объекты - от молекул или атомов и до гигантских космических объектов. При этом правильный выбор допустимости подобной идеализации играет очень большую роль. Если в ряде случаев возможно и целесообразно рассматривать атомы в виде материальных точек, то такая идеализация становится недопустимой при изучении структуры атома. Точно также можно считать материальной точкой нашу планету при рассмотрении ее вращения вокруг Солнца, но отнюдь не в случае рассмотрения ее собственного суточного вращения.
Следует отметить, что характер идеализации может быть весьма различным, если существуют разные теоретические подходы к изучению какого-то явления. В качестве примера можно указать на три разных понятия "идеального газа", сформировавшихся под влиянием различных теоретико-физических представлений Максвелла-Больцмана, Бозе-Эйнштейна и Ферми-Дирака. Однако полученные при этом все три варианта идеализации оказались плодотворными при изучении газовых состояний различной природы: идеальный газ Максвелла-Больцмана стал основой исследований обычных молекулярных разреженных газов, находящихся при достаточно высоких температурах; идеальный газ Бозе-Эйнштейна был применен для изучения фотонного газа, а идеальный газ Ферми-Дирака помог решить ряд проблем электронного газа.
Будучи разновидностью абстрагирования, идеализация допускает элемент чувственной наглядности (обычный процесс абстрагирования ведет к образованию мысленных абстракций, не обладающих никакой наглядностью). Эта особенность идеализации очень важна для реализации такого специфического метода теоретического познания, каковым является мысленный эксперимент (его также называют умственным, субъективным, воображаемым, идеализированным).
Мысленный эксперимент предполагает оперирование идеализированным объектом (замещающим в абстракции объект реальный), которое заключается в мысленном подборе тех или иных положений, ситуаций, позволяющих обнаружить какие-то важные особенности исследуемого объекта. В этом проявляется определенное сходство мысленного (идеализированного) эксперимента с реальным. Более того, всякий реальный эксперимент, прежде чем быть осуществленным на практике, сначала "проигрывается" исследователем мысленно в процессе обдумывания, планирования. В этом случае мысленный эксперимент выступает в роли предварительного идеального плана реального эксперимента.
Вместе с тем мысленный эксперимент играет и самостоятельную роль в науке. При этом, сохраняя сходство с реальным экспериментом, он в то же время существенно отличается от него. Эти отличия заключаются в следующем.
Реальный эксперимент - это метод, связанный с практическим, предметно-манипулятивным, "орудийным" познанием окружающего мира. В мысленном же эксперименте исследователь оперирует не материальными объектами, а их идеализированными образами и само оперирование производится в его сознании, т.е. чисто умозрительно.
Возможность постановки реального эксперимента определяется наличием соответствующего материально-технического (а иногда и финансового обеспечения). Мысленный эксперимент такого обеспечения не требует.
В реальном эксперименте приходится считаться с реальными физическими и иными ограничениями его проведения, с невозможностью в ряде случаев устранить мешающие ходу эксперимента воздействия извне, с искажением в силу указанных причин получаемых результатов. В этом плане мысленный эксперимент имеет явное преимущество перед экспериментом реальным. В мысленном эксперименте можно абстрагироваться от действия нежелательных факторов, проведя его в идеализированном, "чистом" виде.
В научном познании могут быть случаи, когда при исследовании некоторых явлений, ситуаций, проведение реальных экспериментов оказывается вообще невозможным. Этот пробел в познании может восполнить только мысленный эксперимент.
Научная деятельность Галилея, Ньютона, Максвелла, Карно, Эйнштейна и других ученых, заложивших основы современного естествознания, свидетельствует о существенной роли мысленного эксперимента в формировании теоретических идей. История развития физики богата фактами использования мысленных экспериментов. Примером могут служить мысленные эксперименты Галилея, приведшие к открытию закона инерции.
Реальные эксперименты, в которых невозможно устранить фактор трения, казалось бы, подтверждали господствовавшую в течение тысячелетий концепцию Аристотеля, утверждавшую, что движущееся тело останавливается, если толкающая его сила прекращает свое действие. Такое утверждение основывалось на простой констанции фактов, наблюдаемых в реальных экспериментах (шар или тележка, получившие силовое воздействие, а затем катящиеся уже без него по горизонтальной поверхности, неизбежно замедляли свое движение и, в конце концов, останавливались). В этих экспериментах наблюдать равномерное непрекращающееся движение по инерции было невозможно.
Галилей, проделав мысленно указанные эксперименты с поэтапным идеализированием трущихся поверхностей и доведением до полного исключения из взаимодействия трения, опроверг аристотелевскую точку зрения и сделал единственно правильный вывод. Этот вывод мог быть получен только с помощью мысленного эксперимента, обеспечившего возможность открытия фундаментального закона механики движения. "... Закон инерции, - писали А.Эйнштейн и Л.Инфельд, - нельзя вывести непосредственно из эксперимента, его можно вывести умозрительно - мышлением, связанным с наблюдением. Этот эксперимент никогда нельзя выполнить в действительности, хотя он ведет к глубокому пониманию действительных экспериментов".373
Результаты мысленных экспериментов могут ставить иногда серьезные проблемы перед наукой, разрешить которые бывает не так-то легко. Интересным примером в этом плане является мысленный эксперимент Максвелла, вызвавший сенсацию в начале 70-х годов XIX столетия. Этот мысленный эксперимент, описанный в его работе "Теория теплоты", ставил под сомнение второе начало термодинамики. В своем мысленном эксперименте Максвелл допустил наличие особого существа - "демона", "... способности которого настолько изощрены, что оно может следить за каждой молекулой на ее пути и в состоянии делать то, что в настоящее время для нас невозможно". "Предположим, - писал Максвелл, - что имеется сосуд, разделенный на две части А и В перегородкой с небольшим отверстием, и что существо, которое может видеть отдельные молекулы, открывает и закрывает это отверстие так, чтобы дать возможность только более быстрым молекулам перейти из В в А. Это существо, таким образом, без затраты работы повысит температуру в В и понизит в А вопреки второму началу термодинамики".374
Сражение с "демоном" Максвелла заняло длительный период времени. Только в XX столетии американские физики Сцилард, Димерс и Гейбор доказали, что втрое начало термодинамики остается незыблемым и что никакого "вечного двигателя", даже с помощью "демона", построить нельзя. Они сумели спроектировать и рассчитать машину-демона, и убедились, что такая машина работать будет, но требует питания внешней энергией. Причем затраты энергии на ее работу окажутся больше, чем выход энергии в результате ее деятельности. Поиск ответа на проблемы, поставленную мысленным экспериментом Максвелла, был, несомненно, полезен и способствовал приращению научных знаний.
Мысленный эксперимент может иметь большую эвристическую ценность, помогая интерпретировать новое знание, полученное чисто математическим путем. Это подтверждается многими примерами из истории науки. Одним из них является мысленный эксперимент В.Гейзенберга, направленный на разъяснение соотношения неопределенности. "В этом мысленном эксперименте соотношение неопределенности было найдено благодаря абстрагированию, разделившему целостную структуру электрона на две противоположности: волну и корпускулу. Тем самым совпадение результата мысленного эксперимента с результатом, достигнутым математическим путем, означало доказательство объективно существующей противоречивости электрона как цельного материального образования и дало возможность понять это классически".375
Однако незнание некоторыми учеными материалистической диалектики помешало правильно понять этот вывод. В результате возникли многочисленные дискуссии по данному вопросу, которые особенно бурно развернулись на Сольвеевских конгрессах 1927 и 1930 г.г. В этих дискуссиях, по свидетельству их участников, огромную роль играли идеализированные воображаемые эксперименты. В них, писал Гейзенберг, "подобные парадоксы (противоречия между волновыми и корпускулярными представлениями. - Авт.) проступали особенно резко, и мы старались разгадать, какой ответ на такие эксперименты, возможно, дала бы природа".376 Эти мысленные эксперименты способствовали пониманию новых научных положений, помогали объяснить причины отказа от старых представлений.
Метод идеализации, оказывающийся весьма плодотворным во многих случаях, имеет в то же время определенные ограничения. Развитие научного познания заставляет иногда отказываться от принятых ранее идеализированных представлений. Так произошло, например, при создании Эйнштейном специальной теории относительности, из которой были исключены ньютоновские идеализации "абсолютное пространство" и "абсолютное время". Кроме того, любая идеализация ограничена конкретной областью явлений и служит для решения только определенных проблем. Это, хорошо видно хотя бы на примере вышеуказанной идеализации "абсолютно черное тело".
Сама по себе идеализация, хотя и может быть плодотворной и даже подводить к научному открытию, еще недостаточна для того, чтобы сделать это открытие. Здесь определяющую роль играют теоретические установки, из которых исходит исследователь. Рассмотренная выше идеализация паровой машины, удачно осуществленная Сади Карно, подвела его к открытию механического эквивалента теплоты, которого, однако, "... он не мог открыть и увидеть лишь потому, - отмечает Ф.Энгельс, - что верил в теплород. Это является также доказательством вреда ложных теорий".377
Основное положительное значение идеализации как метода научного познания заключается в том, что получаемые на ее основе теоретические построения позволяют затем эффективно исследовать реальные объекты и явления. Упрощения, достигаемые с помощью идеализации, облегчают создание теории, вскрывающей законы исследуемой области явлений материального мира. Если теория в целом правильно описывает реальные явления, то правомерны и положенные в ее основу идеализации.

YIII.4.3.Формализация. Язык науки

Под формализацией понимается особый подход в научном познании, который заключается в использовании специальной символики, позволяющей отвлечься от изучения реальных объектов, от содержания описывающих их теоретических положений и оперировать вместо этого некоторым множеством символов (знаков).
Ярким примером формализации являются широко используемые в науке математические описания различных объектов, явлений, основывающиеся на соответствующих содержательных теориях. При этом используемая математическая символика не только помогает закрепить уже имеющиеся знания об исследуемых объектах, явлениях, но и выступает своего рода инструментом в процессе дальнейшего их познания.
Для построения любой формальной системы необходимо: а) задание алфавита, т.е. определенного набора знаков; б) задание правил, по которым из исходных знаков этого алфавита могут быть получены "слова", "формулы"; в) задание правил, по которым от одних слов, формул данной системы можно переходить к другим словам и формулам (так называемые правила вывода).
В результате создается формальная знаковая система в виде определенного искусственного языка. Важным достоинством этой системы является возможность проведения в ее рамках исследования какого-либо объекта чисто формальным путем (оперирование знаками) без непосредственного обращения к этому объекту.
Другое достоинство формализации состоит в обеспечении краткости и четкости записи научной информации, что открывает большие возможности для оперирования ею. Вряд ли удалось бы успешно пользоваться, например, теоретическими выводами Максвелла, если бы они не были компактно выражены в виде математических уравнений, а описывались бы с помощью обычного, естественного языка.
Разумеется, формализованные искусственные языки не обладают гибкостью и богатством языка естественного. Зато в них отсутствует многозначность терминов (полисемия), свойственная естественным языкам. Они характеризуются точно построенным синтаксисом (устанавливающим правила связи между знаками безотносительно их содержания) и однозначной семантикой (семантические правила формализованного языка вполне однозначно определяют соотнесенность знаковой системы с определенной предметной областью). Таким образом, формализованный язык обладает свойством моносемичности.
Возможность представить те или иные теоретические положения науки в виде формализованной знаковой системы имеет большое значение для познания. Но при этом следует иметь в виду, что формализация той или иной теории возможна только при учете ее содержательной стороны. Только в этом случае могут быть правильно применены те или иные формализмы. "Голое математическое уравнение еще не представляет физической теории, чтобы получить физическую теорию, необходимо придать математическим символам конкретное эмпирическое содержание".378
Поучительным примером формально полученного и на первый взгляд "бессмысленного" результата, который обнаружил впоследствии весьма глубокий физический смысл, являются решения уравнения Дирака, описывающегося движение электрона. Среди этих решений оказались такие, которые соответствовали состояниям с отрицательной кинетической энергией. Позднее было установлено, что указанные решения описывали поведение неизвестной дотоле частицы - позитрона, являющегося антиподом электрона. В данном случае некоторое множество формальных преобразований привело к содержательному и интересному для науки результату.
Расширяющееся использование формализации как метода теоретического познания связано не только с развитием математики. В химии, например, соответствующая химическая символика, вместе с правилами оперирования ею явилась одним из вариантов формализованного искусственного языка. Все более важное место метод формализации занимал в логике по мере ее развития. Труды Лейбница положили начало созданию метода логических исчислений. Последний привел к формированию в середине XIX века математической логики, которая во второй половине нашего столетия сыграла важную роль в развитии кибернетики, в появлении электронных вычислительных машин, в решении задач автоматизации производства и т.д.
Язык современной науки существенно отличается от естественного человеческого языка. Он содержит много специальных терминов, выражений, в нем широко используются средства формализации, среди которых центральное место принадлежит математической формализации. Исходя из потребностей науки, создаются различные искусственные языки, предназначенные для решения тех или иных задач. Все множество созданных и создаваемых искусственных формализованных языков входит в язык науки, образуя мощное средство научного познания.
Вместе с тем следует иметь в виду, что создание какого-то единого формализованного языка науки не представляется возможным. Дело в том, что даже достаточно богатые формализованные языки не удовлетворяют требованию полноты, т.е. некоторое множество правильно сформулированных предложений такого языка (в том числе и истинных) не может быть выведено чисто формальным путем внутри этого языка. Данное положение вытекает из результатов, полученных в начале 30-х годов ХХ столетия австрийским логиком и математиком Куртом Геделем. Знаменитая теорема Геделя утверждает, что каждая формальная система либо противоречива, либо содержит некоторую неразрешимую (хотя и истинную) формулу, т.е. такую формулу, которую в данной системе нельзя ни доказать, ни опровергнуть.
Правда, то, что не выводимо в данной формальной системе, выводимо в другой системе, более богатой. Но, тем не менее, все более полная формализация содержания никогда не может достигнуть абсолютной полноты, т.е. возможности любого формализованного языка остаются принципиально ограниченными. Таким образом, Гедель дал строго логическое обоснование невыполнимости идеи Р.Карнапа о создании единого, универсального, формализованного "физикалистского" языка науки.
"Однако из невозможности создать единый для всех наук формализованный язык не следует делать вывод, умаляющий важность построения формализованных языков вообще. Из ... геделевской теоремы "о неполноте" следует, что точная формализованная система, выступающая в качестве языка науки, не может считаться совершенно адекватной системе объектов, ибо некоторые содержательно истинные предложения не могут быть получены средствами данного формализма, а это означает, что формализация языка науки не снижает, а, напротив, предполагает содержательные моменты в построении языковой системы.
Формализованные языки не могут быть единственной формой языка современной науки, ибо стремление к максимальной адекватности требует использовать и неформализованные системы. Но в той мере, в какой адекватность немыслима без точности, тенденция к возрастающей формализации языков всех и особенно естественных наук является объективной и прогрессивной ...".379

YIII.5. ОБЩЕНАУЧНЫЕ МЕТОДЫ,
ПРИМЕНЯЕМЫЕ НА ЭМПИРИЧЕСКОМ И ТЕОРЕТИЧЕСКОМ УРОВНЯХ ПОЗНАНИЯ

YIII.5.1.Анализ и синтез

Под анализом понимают разделение объекта (мысленно или реально) на составные части с целью их отдельного изучения. В качестве таких частей могут быть какие-то вещественные элементы объекта или же его свойства, признаки, отношения и т.п.
Анализ - необходимый этап в познании объекта. С древнейших времен анализ применялся, например, для разложения на составляющие некоторых веществ. В частности, уже в Древнем Риме анализ использовался для проверки качества золота и серебра в виде так называемого купелирования (ализируемое вещество взвешивалось до и после нагрева). Постепенно формировалась аналитическая химия, которую по праву можно называть матерью современной химии: ведь прежде чем применять то или иное вещество в конкретных целях, необходимо выяснить его химический состав.
Заметим, что метод анализа сыграл в свое время важную роль в крушении теории флогистона. "... Теория флогистона тормозила развитие химии. Новые открытия и полнейшая неудача попыток обнаружить флогистон аналитическим путем (курсив наш. - Авт.) постепенно расшатывали теорию".380
Однако в науке Нового времени аналитический метод был абсолютизирован. В указанный период ученые, изучая природу, "рассекали ее на части" (по выражению Ф.Бэкона) и, исследуя части, не замечали значения целого. Это было результатом метафизического метода мышления, который господствовал тогда в умах естествоиспытателей.
Несомненно, анализ занимает важное место в изучении объектов материального мира. Но он составляет лишь первый этап процесса познания. Если бы, скажем, химики ограничивались только анализом, т.е. выделением и изучением отдельных химических элементов, то они не смогли бы познать все те сложные вещества, в состав которых входят эти элементы. Сколь бы глубоко ни были изучены, например, свойства углерода и водорода, по этим сведениям еще ничего нельзя сказать о многочисленных веществах, состоящих из различного сочетания этих химических элементов.
Для постижения объекта как единого целого нельзя ограничиваться изучением лишь его составных частей. В процессе познания необходимо вскрывать объективно существующие связи между ними, рассматривать их в совокупности, в единстве. Осуществить этот второй этап в процессе познания - перейти от изучения отдельных составных частей объекта к изучению его как единого связанного целого возможно только в том случае, если метод анализа дополняется другим методом - синтезом.
В процессе синтеза производится соединение воедино составных частей (сторон, свойств, признаков и т.п.) изучаемого объекта, расчлененных в результате анализа. На этой основе происходит дальнейшее изучение объекта, но уже как единого целого. При этом синтез не означает простого механического соединения разъединенных элементов в единую систему. Он раскрывает место и роль каждого элемента в системе целого, устанавливает их взаимосвязь и взаимообусловленность, т.е. позволяет понять подлинное диалектическое единство изучаемого объекта.
Анализ и синтез с успехом используются и в сфере мыслительной деятельности человека, т.е. в теоретическом познании. Но и здесь, как и на эмпирическом уровне познания, анализ и синтез - это не две оторванные друг от друга операции. По своему существу они - как бы две стороны единого аналитико-синтетического метода познания. Как подчеркивал Ф.Энгельс, "мышление состоит столько же в разложении предметов сознания на их элементы, сколько в объединении связанных друг с другом элементов в некоторое единство. Без анализа нет синтеза".381

YIII.5.2.Аналогия и моделирование

Под аналогией понимается подобие, сходство каких-то свойств, признаков или отношений у различных в целом объектов. Установление сходства (или различия) между объектами осуществляется в результате их сравнения. Таким образом, сравнение лежит в основе метода аналогии.
Если делается логический вывод о наличии какого-либо свойства, признака, отношения у изучаемого объекта на основании установления его сходства с другими объектами, то этот вывод называют умозаключением по аналогии. Ход такого умозаключения можно представить следующим образом. Пусть имеется, например, два объекта: А и В. Известно, что объекту А присущи свойства Р1, Р2..., Рn, Pn+1. Изучение объекта В показало, что ему присущи свойства Р1, Р2..., Рn, совпадающие соответственно со свойствами объекта А. На основании сходства ряда свойств (Р1, Р2..., Рn) у обоих объектов может быть сделано предположение о наличии свойства Pn+1 у объекта В.
Степень вероятности получения правильного умозаключения по аналогии будет тем выше: 1) чем больше известно общих свойств у сравниваемых объектов; 2) чем существеннее обнаруженные у них общие свойства и 3) чем глубже познана взаимная закономерная связь этих сходных свойств. При этом нужно иметь в виду, что если объект, в отношении которого делается умозаключение по аналогии с другим объектом, обладает каким-нибудь свойством, не совместимым с тем свойством, о существовании которого должен быть сделан вывод, то общее сходство этих объектов утрачивает всякое значение.
Указанные соображения об умозаключении по аналогии можно дополнить также и следующими правилами: 1) общие свойства должны быть любыми свойствами сравниваемых объектов, т.е. подбираться "без предубеждения" против свойств какого-либо типа; 2) свойство РП?1 должно быть того же типа, что и общие свойства Р1, Р2..., Рn; 3) общие свойства Р1, Р2..., Рn должны быть возможно более специфичными для сравниваемых
объектов, т.е. принадлежать возможно меньшему кругу объектов; 4) свойство Рn=1, наоборот, должно быть наименее специфичным, т.е. принадлежать возможно большему кругу объектов.382
Метод аналогии применяется в самых различных областях науки : в математике, физике, химии, кибернетике, в гуманитарных дисциплинах и т.д. О познавательной ценности метода аналогии хорошо сказал известный ученый-энергетик В.А.Веников; "Иногда говорят: "Аналогия - не доказательство"... Но ведь если разобраться, можно легко понять, что ученые и не стремятся только таким путем доказать что-нибудь. Разве мало того, что верно увиденное сходство дает могучий импульс творчеству?.. Аналогия способна скачком выводить мысль на новые, неизведанные орбиты, и, безусловно, правильно положение о том, что аналогия, если обращаться с ней с должной осторожностью, - наиболее простой и понятный путь от старого к новому".383
Существуют различные типы выводов по аналогии. Но общим для них является то, что во всех случаях непосредственному исследованию подвергается один объект, а вывод делается о другом объекте. Поэтому вывод по аналогии в самом общем смысле можно определить как перенос информации с одного объекта на другой. При этом первый объект, который собственно и подвергается исследованию, именуется моделью, а другой объект, на который переносится информация, полученная в результате исследования первого объекта (модели), называется оригиналом (иногда - прототипом, образцом и т.д.). Таким образом, модель всегда выступает как аналогия, т.е. модель и отображаемый с ее помощью объект (оригинал) находятся в определенном сходстве (подобии).
"... Под моделированием понимается изучение моделируемого объекта (оригинала), базирующееся на взаимооднозначном соответствии определенной части свойств оригинала и замещающего его при исследовании объекта (модели) и включающее в себя построение модели, изучение ее и перенос полученных сведений на моделируемый объект - оригинал".384
В зависимости от характера используемых в научном исследовании моделей различают несколько видов моделирования.
1. Мысленное (идеальное) моделирование. К этому виду моделирования относятся различные мысленные представления в форме тех или иных воображаемых моделей. Например, в идеальной модели электромагнитного поля, созданной Дж.Максвеллом, силовые линии представлялись в виде трубок различного сечения, по которым течет воображаемая жидкость, не обладающая инерцией и сжимаемостью. Модель атома, предложенная Э.Резерфордом, напоминала Солнечную систему: вокруг ядра ("Солнца") обращались электроны ("планеты"). Следует заметить, что мысленные (идеальные) модели нередко могут быть реализованы материально в виде чувственно воспринимаемых физических моделей.
. 2. Физическое моделирование. Оно характеризуется физическим подобием между моделью и оригиналом и имеет целью воспроизведение в модели процессов, свойственных оригиналу. По результатам исследования тех или иных физических свойств модели судят о явлениях, происходящих (или могущих произойти) в так называемых "натуральных условиях". Пренебрежение результатами таких модельных исследований может иметь тяжелые последствия. Поучительным примером этого является вошедшая в историю гибель английского корабля-броненосца "Кэптэн", построенного в 1870 г. Исследования известного ученого-кораблестроителя В.Рида, проведенные на модели корабля, выявили серьезные дефекты в его конструкции. Но заявление ученого, обоснованное опытом с "игрушечной моделью", не было принято во внимание английским Адмиралтейством. В результате при выходе в море "Кэптэн" перевернулся, что повлекло за собой гибель более 500 моряков.
В настоящее время физическое моделирование широко используется для разработки и экспериментального изучения различных сооружений (плотин электростанций, оросительных систем и т.п.), машин (аэродинамические качества самолетов, например, исследуются на их моделях, обдуваемых воздушным потоком в аэродинамической трубе), для лучшего понимания каких-то природных явлений, для изучения эффективных и безопасных способов ведения горных работ и т.д.
3.Символическое (знаковое) моделирование. Оно связано с условно-знаковым представлением каких-то свойств, отношений объекта-оригина-ла. К символическим (знаковым) моделям относятся разнообразные топологические и графовые представления (в виде графиков, номограмм, схем и т.п.) исследуемых объектов или, например, модели, представленные в виде химической символики и отражающие состояние или соотношение элементов во время химических реакций.
Особой и очень важной разновидностью символического (знакового) моделирования является математическое моделирование. Символический язык математики позволяет выражать свойства, стороны, отношения объектов и явлений самой различной природы. Взаимосвязи между различными величинами, описывающими функционирование такого объекта или явления, могут быть представлены соответствующими уравнениями (дифференциальными, интегральными, интегро-дифференциальными, алгебраическими) и их системами. "Получившаяся система уравнений вместе с известными данными, необходимыми для ее решения (начальные условия, граничные условия, значения коэффициентов уравнений и т.п.), называется математической моделью явления".385
Математическое моделирование может применяться в особом сочетании с физическим моделированием. Такое сочетание, именуемое вещественно-математическим (или предметно-математическим) моделированием, позволяет исследовать какие-то процессы в объекте-оригинале, заменяя их изучением процессов совсем иной природы (протекающих в модели), которые, однако, описываются теми же математическими соотношениями, что и исходные процессы. Так, механические колебания могут моделироваться электрическими колебаниями на основе полной идентичности описывающих их дифференциальных уравнений.
В настоящее время вещественно-математическое моделирование нередко реализуется с помощью электронных аналоговых устройств, которые позволяют создавать математическую аналогию между процессами, протекающими в объекте-оригинале и в специально организованной электронной схеме. Последняя и обеспечивает получение новой информации о процессах в исследуемом объекте.
3. Численное моделирование на компьютере. Эта разновидность моделирования основывается на ранее созданной математической модели изучаемого объекта или явления и применяется в случаях больших объемов вычислений, необходимых для исследования данной модели. При этом для решения содержащихся в ней систем уравнений с помощью компьютера необходимо предварительное составление соответствующей программы. В данном случае компьютер вместе с введенной в нее программой представляет собой материальную систему, реализующую численное моделирование исследуемого объекта или явления.
Численное моделирование особенно важно там, где не совсем ясна физическая картина изучаемого явления, не познан внутренний механизм взаимодействия. Путем расчетов на компьютере различных вариантов ведется накопление фактов, что дает возможность, в конечном счете, произвести отбор наиболее реальных и вероятных ситуаций. Активное использование методов численного моделирования позволяет резко сократить сроки научных и конструкторских разработок.
Метод моделирования непрерывно развивается: на смену одним типам моделей по мере прогресса науки приходят другие. В то же время неизменным остается одно: важность, актуальность, а иногда и незаменимость моделирования как метода научного познания.

IX. НАУКА, ТЕХНИКА, ТЕХНОЛОГИЯ

IX.1. ЧТО ТАКОЕ НАУКА?

"Наука" в переводе с латинского означает "знание". Поэтому, на первый взгляд, ответить на вопрос, что такое наука, не сложно: это физика, химия, биология, математика и другие дисциплины, которые изучаются в школе и вузе. Сложнее дать общее определение науки. Автор фундаментального труда "Наука в истории общества" английский ученый Д.Бернал пишет: "Наука так стара, на протяжении своей истории она претерпела столько изменений... что любая попытка дать определение науки, а таких имеется немало, может выразить более или менее точно лишь один из ее аспектов, и часто второстепенный, существовавший в какой-то период ее развития".386
Откроем сочинения крупнейшего философа и ученого античности - Аристотеля. Науки он делит на три основные вида. Есть науки "умозрительные", те, которые познают свой предмет с помощью одного только разума. Это высшие науки, постигают самое главное в мире, первые причины бытия. К ним относятся первая философия - учение о божественном, физика - наука о "природе" и математика. Следующая группа наук - "практические": политика, этика, экономика. Они исследуют наилучшее государственное устройство, поведение человека, лучшие способы ведения хозяйства и т.д. Третья группа наук - науки "творческие", куда включаются все ремесленные искусства: от врачевания, строительства, военного дела и вплоть до поварского искусства. Эти науки низшие, по сравнению с другими.
Виды де-
ятельно-сти
Науки
Предмет исследования
Устройство мира (космоса)


Философы


Умозритель- ные науки
Первая философия
Первые начала (бог)
Бог- перводвигатель


Физика
Начала природных вещей
Природа: естественные тела


Математика
Числа

Политики
Практические науки
Политика
Этика
Экономика
Начала государства
Государство- полис
"Творцы"
Творческие науки
Врачевание
Судостроение
Ткачество
Начала искусственных вещей
Искусственные вещи

Науки соответствуют определенным частям мира - космоса, который включает в себя бога-перводвигателя, главную причину всякого изменения, природу - естественные тела, государство и искусственные вещи, созданные человеком. Наглядно это можно представить в виде таблицы.
Такое представление о науке вызывает некоторое замешательство. Разве можно считать наукой учение о боге? И может ли наука быть умозрительной? А политики и ремесленники, они что, тоже наукой занимаются?
В отличие от нашего представления о науке как отдельной теоретической дисциплине, для Аристотеля "наука" - понятие более широкое. Это составная часть деятельности, направленной на достижение какой-то цели. Это как бы "теория" деятельности. "Наукой" владеет знаток своего дела, он знает, как надо делать и почему надо поступать таким образом, т.е. постигает общие причины. Мудрец, "теоретик", знаток в античности - это не столько чистый ученый, исследующий объективный природный процесс, сколько ученый и практик одновременно, знаток своего дела, учитель, наставник, способный научить определенному виду деятельности: врачеванию, домостроению, арифметике или политике.
Наука в собственном смысле, наука "теоретическая", по Аристотелю, - это наука умозрительная. Она постигает первые начала и причины, вечное, неизменное, божественное бытие. В практике она не применима. Это занятие свободного человека, который получает удовольствие от самого процесса мышления и созерцания истины.
Несколько отличное от нашего представление о науке существовало в XYII-XYIII веках. В этот период наука и философия рассматриваются как понятия тождественные. Философия - это знание, полученное с помощью разума. Оно противопоставляется знанию, содержащемуся в Святом Писании. Таким образом, понятие "философия" включало в себя все науки: математику, физику, механику, естественную историю, этику и т.д.
Творец "Великого Восстановления Наук" Ф. Бэкон (1561-1626) делит все науки на три больших раздела в зависимости от свойств человеческой "души": памяти соответствует наука история, разуму-философская наука, воображению - поэзия. Философия делится у него на естественную теологию, естественную философию и учение о человеке. Естественная философия включает в себя физику и метафизику, философия человека - науки, изучающие тело и дух (в равной мере логика, медицина, косметика).
Другой родоначальник философии нового времени Р.Декарт (1596-1650) писал: "Вся философия подобна как бы дереву, корни которого - метафизика, ствол - физика, а ветви, исходящие от этого ствола, - все прочие науки, сводящиеся к трем главным: медицине, механике и этике. И у Ф.Бэкона, и у Р.Декарта понятие "философия", таким образом, охватывало все теоретическое и эмпирическое знание, в первую очередь естественные теоретические науки.
В соответствии с этим в XVII-XVIII вв. и даже в начале XIX в. философией называли теоретическую механику, биологию и другие науки. Сочинение И. Ньютона по механике озаглавлено "Математические начала натуральной философии" (1687 г.), книга К. Линнея по основам ботаники - "Философия ботаники"'(1751 г.), сочинение Ж. Б. Ламарка по биологии - "Философия зоологии" (1809 г.), один из капитальных трудов П. С. Лапласа назывался "Опыт философии теории вероятностей" (1814г.).
Ситуация изменяется во второй половине XIX века. В этот период наука противопоставляет себя не только знанию, содержащемуся в Священном Писании, но и философии. Французский философ и социолог О.Конт (1798-1857), родоначальник позитивизма, выделяет три периода в развитии разума: религиозный, философский и научный. Философия рассматривается как то, что предшествует науке, настоящему позитивному знанию о мире. Главный недостаток философии в том, что она не изучает реальность, а измышляет абстракции. Когда возникает позитивная наука, философия оказывается ненужной. Позитивизм в дальнейшем широко распространяется среди ученых.
В настоящее время самопознание науки осуществляется в рамках таких дисциплин, как философия науки, социология науки, науковедение, сформировавшихся во второй половине ХХ века.
Существуют десятки определений науки387, сформулированных представителями этих дисциплин и самими учеными.
Среди них можно выделить две основные группы: 1) определения науки как системы знаний и 2) определения ее как вида человеческой деятельности. Это и есть два важнейших аспекта науки, которые необходимо учесть в ее определении.
Наука - это деятельность по производству объективно-истинного знания и результат этой деятельности - систематизированное, достоверное, практически проверенное знание.
Исходя из этого определения мы можем сказать, что не всякое знание является наукой. В общем виде знание - это то, что организует и направляет человеческую деятельность. В эпоху Платона и Аристотеля понятия "ремесло", "искусство" (тэхнэ) и наука (эпистема) слабо различались. Основное "знание", которым владел человек той эпохи - знание практическое. Это не знание в собственном смысле, а умение, навык: как пахать, как сеять, как строить, как изготовить тот или иной предмет. Опыт не отделен от самой деятельности, существует как умелость мастера и осваивается чисто практически через подражание. Большинство знаний-умений мы и сейчас получаем таким способом: ходить, плавать, играть в футбол и другие игры, владеть инструментами - ложкой, вилкой, ножом, молотком и т.д., а также множество других навыков мы приобретаем практически, осваивая определенные действия, обучаясь действовать определенным образом. Это "знание" составляет главную часть нашего опыта, основу нашей жизни в мире. Человек вообще тысячи лет существовал на земле без всякой науки, опираясь на практическое "знание", т.е. знание о том, "как сделать". Человеку не обязательно знать, как устроено зерно пшеницы, что там у него внутри. Он бросал его в землю и получал урожай, а потом выпекал из зерна хлеб, тоже не имея представления о тех химических реакциях, которые при этом протекают.
В отличие от опытно-практического знания, наука, как об этом говорил еще Аристотель, есть знание причин. Ученый пытается понять, почему тот или иной процесс протекает таким образом, какие причины его обуславливают. Научное знание отражает устойчивые, повторяющиеся связи явлений действительности, выражаемые в законах. Физика, например, исследует физические процессы, открывает законы, управляющие этими процессами; химия исследует химические процессы и их закономерности и т.д.
Сущность научного знания заключается в достоверном обобщении фактов, в том, что за случайным оно находит необходимое, закономерное, за единичным - общее и на этой основе осуществляет предвидение различных явлений и событий. Весь прогресс научного знания связан с возрастанием силы и диапазона научного предвидения. Предвидение же дает возможность контролировать процессы и управлять ими. Научное знание открывает возможность не только предвидения будущего, но и сознательного его формирования. Жизненный смысл всякой науки может быть охарактеризован так: знать, чтобы предвидеть, предвидеть, чтобы действовать.
Еще одна особенность научного знания - объективность. Эйнштейн писал: "То, что мы называем наукой, имеет своей исключительной задачей твердо установить, что есть".388 Наука - знание об окружающем мире (или части его). Ее задача - дать истинное отражение исследуемых процессов, объективную картину того, что есть.
Поэтому наука стремится устранить всякие субъективные наслоения, привносимые человеком. Для человека мир не является объективной реальностью, существующей независимо от него. Человек живет в мире и всякое явление, процесс, вещь имеют для него определенное значение, вызывают определенные эмоции, чувства, оцениваются. Мир всегда субъективно окрашен, воспринимается сквозь призму человеческих желаний и интересов. (Здесь можно вспомнить основные особенности мифологического сознания, о которых шла речь в первой главе). Наука - попытка увидеть мир, каким он является сам по себе, дать объективную картину реальности.
Становление объективного знания - длительный и сложный процесс преодоления мифологических и религиозных представлений. В мифологии и религии мир рассматривается как управляемый волей богов. Но боги созданы по образу и подобию людей. Они обладают теми качествами, которые человек хотел бы иметь. Мир тоже рассматривается по образу и подобию человека, он одушевлен, полон живых сил. Такое представление о мире лежит в основе магии, которая пытается воздействовать на те или иные процессы с помощью заклинаний, заговоров и т.п.
Становление объективного знания начинается в античности. Собственно, возникновение философии есть начало этого процесса. Уже первые философы - Фалес, Анаксимен, Анаксимандр, затем Гераклит и Демокрит - пытаются создать новое представление о мире. По их мнению все в мире происходит в силу необходимости, а не по воле непредсказуемых богов.
Завершается процесс становления объективного знания в XYI-XYII веках, когда возникает механико-математическое естествознание, основания которого заложили Галилей, Гук, Гюйгенс, Ньютон и другие выдающиеся ученые того времени. Его отличительная особенность - экспериментальный метод. Именно эксперимент, который входит в науку в XYII веке, дает возможность определить, какие представления о мире обладают объективной истинностью, а какие - просто фантазии, вымысел.
Следующая особенность научного знания - его системность. Это знание организованное в научную теорию, логически стройное, непротиворечивое. Пример такой логической стройности - математика. Долгое время она считалась образцом науки и все другие научные дисциплины пытались походить на нее.
Системность отличает научное знание от знания обыденного.
Таким образом, мы рассмотрели в общих чертах основные характеристики научного знания.

IX.2.НАУКА КАК ОСОБЫЙ ВИД ДЕЯТЕЛЬНОСТИ

Наука - не только знание, это особый вид человеческой деятельности, сложный процесс "духовного производства", в котором многие тысячи людей нашли свою профессию. Если раньше научные исследования осуществлялись, как правило, одиночками или небольшими группами людей в маленьких лабораториях с примитивным оборудованием, то теперь положение коренным образом изменилось: научное творчество осуществляется, как правило, объединенными усилиями больших коллективов людей в гигантских лабораториях с дорогостоящим материальным оснащением. Научное творчество осуществляется в разветвленной системе научных учреждений, институтов, производственных лабораторий, учебных заведений, особенно университетов.
В настоящее время эта деятельность институциализирована, т.е. приобрела устойчивые социальные формы, организована.
Как вид деятельности наука характеризуется:
1). Определенной системой ценностей, своей особой мотивацией , которая определяет деятельность ученого. Это, во-первых, ценность истины, т.е. установка на получение объективно-истинного знания. Ценность разума как главного инструмента достижения истины. Ценность нового знания, что, собственно, и является результатом деятельности ученого. В целом наука в качестве своей основы имеет особый менталитет, особый тип мышления, для которого характерны рационализм, стремление к знанию, независимость суждений, готовность признать свои ошибки, честность, коммуникабельность, готовность к сотрудничеству, творческие способности, бескорыстность.
2). Определенным набором "инструментов" - технических устройств, аппаратуры и т.д. - используемых в научной деятельности. В настоящее время эта составляющая науки приобретает огромное значение. Оснащенность научного труда во многом определяет его результативность.
3). Совокупностью методов, используемых для получения нового знания.389
4). Способом организации научной деятельности. Наука сейчас это сложнейший социальный институт, включающий в себя три основных составляющих: исследования (производство нового знания); приложения (доведения новых знаний до их практического использования); подготовку научных кадров. Все эти составляющие науки организованы в виде соответствующих учреждений: университетов, институтов, академий, НИИ, КБ, лабораторий и т.д.
Таким образом, каждый ученый, приступая к научному исследованию, получает в свое распоряжение накопленный в ходе развития своей научной области фактический материал - результаты наблюдений и экспериментов; результаты обобщения фактического материала, выраженные в соответствующих теориях, законах и принципах; основанные на фактах научные предположения, гипотезы, нуждающиеся в дальнейшей проверке; общетеоретическое, философское истолкование открытых наукой принципов, законов; мировоззренческие установки; соответствующую методологию и техническое оснащение. Все эти стороны и грани науки существуют в тесной связи между собой.
Необходимым условием научного исследования является установление факта или фактов. Научный факт выступает в виде прямого наблюдения объекта, показания прибора, фотографии, протоколов опытов, таблиц, схем, записей, архивных документов, проверенных свидетельств очевидца и т. д.
Сила науки заключается в ее опоре на факты. Но сами по себе факты не составляют еще науки, так же как строительный материал еще не есть здание. Факты включаются в ткань науки лишь тогда, когда они подвергаются отбору, классификации, обобщению и объяснению. Задача научного познания заключается в том, чтобы вскрыть причину возникновения данного факта, выяснить существенное его значение и установить закономерную связь между фактами.
Для прогресса научного познания особо важно установление новых фактов. Их осмысление ведет к построению теории, представляющей собой важнейшую составную часть любой науки. Развитие науки связано с открытием новых законов действительности. Власть человека над окружающим миром измеряется объемом и глубиной знания его законов. К законам науки тесно примыкают принципы, представляющие собой обобщенные опытные факты, например, принцип наименьшего действия, принцип постоянства скорости света.
Любая сколь угодно развитая теория представляет собой неполное, огрубленное воспроизведение объекта. Научное познание движется в вечном противоречии между принятой теорией и вновь открываемыми фактами. Поскольку любая научная теория носит ограниченный характер, постольку в каждый данный период существует необходимость в предположительном знании, в гипотезах. Проверенные и подтвержденные опытом гипотезы превращаются в теории.
Существенным компонентом научного познания является философское истолкование данных науки, составляющее ее мировоззренческую и методологическую основу. Ученый подходит к изучаемым фактам, к их обобщению всегда с определенных мировоззренческих позиций. Сам отбор фактов направляется определенной гипотезой и невозможен без неких общих предположений исследователя.
Для научного познания существенно прежде всего то, что исследуется и как исследуется. Ответ на вопрос о том, что исследуется, раскрывает природу предмета науки, тогда как ответ на вопрос о том, как осуществляется исследование, раскрывает природу метода исследования. Предметом науки является вся действительность, т. е. различные формы и виды движущейся материи.
Особенности метода определяются особенностями предмета научного исследования. В методе выражено содержание изучаемого предмета. Метод настолько тесно связан с научным познанием мира, что каждый существенный шаг в развитии науки обычно вызывает к жизни новые методы исследования. Поэтому об уровне развития той или иной науки можно судить и по характеру развития применяемых ею методов.
Общие методы, свойственные всякой науке, всему научному познанию, изучаются философией.
Особенные методы применяются во всех отраслях науки, но для исследования лишь отдельных сторон ее объектов.
Поскольку путь познания идет от изучения непосредственных явлений к раскрытию их сущности, постольку отдельным ступеням этого общего хода познания соответствуют конкретные приемы исследования: непосредственное наблюдение явлений в естественных условиях; эксперимент, с помощью которого изучаемое явление воспроизводится искусственно и ставится в заранее определенные условия; сравнение; измерение-частный случай сравнения, представляющее собой особого рода прием, при помощи которого находится количественное отношение (выражаемое числом) между изучаемым объектом (неизвестным) и другим (известным) объектом, принятым за единицу сравнения (масштаб); индукция и дедукция, с помощью которых логически обобщаются эмпирические данные и выводятся логические следствия; анализ и синтез, позволяющие раскрывать закономерные связи между объектами (их частями и сторонами) путем их расчленения и воссоздания из частей. Сюда относятся также математические приемы как особые способы исследования предметов и явлений действительности, их структуры, обработки и обобщения результатов этих исследований, поиска и выражения физических законов и т. д.
Средствами научного исследования являются те предметы (приборы, инструменты и т. д.), которые служат целям экспериментального изучения объекта и опытной проверки достигнутых результатов, а также целям фиксирования и обработки этих результатов. Предположительное объяснение причин и сущности изучаемых явлений дается в гипотезах. Теоретическое обобщение опытных данных совершается при помощи научных абстракций, понятий; накапливаемый эмпирический материал вызывает необходимость пересмотра и ломки прежних теоретических представлений и выработки новых путем обобщения вновь накопленных опытных данных. Объединение отдельных научных теорий, гипотез, понятий в систему взглядов приводит к выработке общей картины, отражающей действительность в ее внутренней связи.

IX.3.ЗАКОНОМЕРНОСТИ РАЗВИТИЯ НАУКИ.

Важнейшими закономерностями развития науки считаются следующие:
1). Обусловленность развития науки потребностями общественно-исторической практики. Это - главная движущая сила или источник развития науки.
2). Относительная самостоятельность развития науки. Какие бы конкретные задачи ни ставила практика перед наукой, решение этих задач может быть осуществлено лишь по достижении определенных ступеней развития самого процесса познания действительности, который совершается в порядке последовательного перехода от явлений к сущности и от менее глубокой сущности ко все более глубокой.

<< Пред. стр.

страница 9
(всего 12)

ОГЛАВЛЕНИЕ

След. стр. >>

Copyright © Design by: Sunlight webdesign