LINEBURG


<< Пред. стр.

страница 2
(всего 5)

ОГЛАВЛЕНИЕ

След. стр. >>

1 Бк (беккерель)
3.876 Р (рентген)
=
1Кл/кг (кулон на килограмм)
100 рад (поглощенная доза в эргах - единицах работы)
=
1 Гр (грэй, поглощенная доза в джоулях)
Бэр (эквивалентная доза)
=
Зв (зиверт)
Поглощенная доза (Д) в 1 рад получена тогда, когда 1 грамм вещества поглощает 100 эрг энергии. Это равняется 10-2 Дж/кг. Эквивалентная доза (Н) введена для оценки ущерба здоровью человека при хроническом воздействии ионизирующего излучения на календарный год: Н=Д к, где Д поглощенная доза, а к - коэффициент качества ионизирующего излучения в единице объема биологической ткани.

Радиоактивные отходы (РАО)
Продукты, образующиеся при работах с радиоактивными веществами, с содержанием радиоактивных изотопов выше норм радиационной безопасности. Подразделяются на жидкие и твердые отходы. Жидкие РАО подразделяют на слабоактивные (удельная активность менее 1х10-5 Ки/л), среднеактивные (удельная активность менее 1х10-5 - 1 Ки/л) и высокоактивные (удельная активность менее 1 Ки/л). Твердые отходы считаются активными при удельной активности: а) 2х10-7 Ки/кг для альфа-излучения, б) 1х10-8 Ки/кг для трансурановых элементов, в) 2х10-8 Ки/кг для бета-излучения, г) 1х10-7 г-экв радия на килограмм для гамма-излучения.
Разрушение кораллового рифа
Происходит в результате естественных процессов и в результате деятельности человека, включая вулканическую деятельность, ураганы, землетрясения, разрушительное воздействие морских организмов, заиливание воды, сброс отходов, химическое загрязнение, загрязнение пестицидами, собирательство раковин и кораллов, некоторые виды рыбоводства.
Растворенный кислород
Кислород, содержащийся в воде и необходимый для жизни организмов. По мере увеличения содержания органических отходов в воде возрастает численность бактерий, питающихся этими отходами. Эти бактерии потребляют больше кислорода, и его содержание в воде падает, что приводит к гибели водных животных.
рН
Числовое выражение относительной кислотности и щелочности химического раствора, измеряемой на шкале от 0 до 14. Термин рН говорит о количестве ионов водорода (+Н) содержащихся в жидкости. В то время как показатель рН равный 7.0 говорит о том, что среда нейтральна, более высокие показатели свидетельствуют об увеличивающейся щелочности среды, а показатели рН ниже 7.0 говорят о кислотности среды. Часто употребляемые в хозяйстве вещества имеют следующие показатели рН: отбеливатель - 12.7, нашатырь - 11.3, кровь - 7.3, молоко - 6.8, уксус - 2.8, кислота в аккумуляторах - 0.2.
ррм (parts per million)
"Частей на миллион" - единица, показывающая уровень концентрации загрязнителя в среде, когда количества этого загрязнителя чрезвычайно малы. Примером 1 ррм может послужить одно зернышко риса в миллионе зерен пшеницы. В СНГ ррм соответствует понятиям миллиграмм на литр или моль. В справочной литературе представлены таблицы перевода ррм в единицы, употребляемые в СНГ.
Сточные воды
Воды, использованные в бытовых или производственных целях и получившие при этом дополнительные примеси, изменившие первоначальный химический состав или физические свойства; сточными также называют воды, стекающие с территории населенных пунктов, промышленных и сельскохозяйственных предприятий в результате выпадения атмосферных осадков, полива угодий или поливки улиц.
Тератогены
Вещества, вызывающие при воздействии на организм тератогенез - возникновение уродств и других аномалий в его развитии.
Токсичное вещество
Вещество, способное причинить вред здоровью людей или окружающей среде.
Токсичные отходы
Отходы, содержащие вещества, которые при контакте с организмом человека могут вызвать заболевания или отклонения в состоянии здоровья.
Тяжелые металлы:
Химические элементы (более 40) с атомной массой свыше 50 атомных единиц. К ним относятся свинец, цинк, кадмий, ртуть, молибден, марганец, никель, олово, кобальт, титан, медь, ванадий, и др.
Углеводороды
Большой класс органических химических веществ, молекулы которых построены только из атомов водорода и углерода. Простейший углеводород - это метан с формулой CH4. Значительно более сложный углеводород (с более тяжелой и более сложной формулой) - это октан (C8H18), составляющая сырой нефти. Сырую нефть и метан часто называют углеводородными видами топлива.
Устойчивое развитие
Развитие, при котором удовлетворение потребностей осуществляется без ущерба для будущих поколений.
Фитотоксичный
Ядовитый для растений.
Фоновая радиация
Природное радиоактивное излучение, источниками которого являются космические лучи, газ радон и испытания ядерного оружия.
Хлорфторометаны
Подгруппа ХФУ, которая приводит к тем же последствиям для озонового слоя земли, что и хлорфторуглероды.
Хлорфторуглероды
Произведенные промышленным способом вещества, (ХФУ), используемые в холодильниках, кондиционерах, растворителях, стерилизаторах и для производства разного рода пенопластов. Когда эти вещества попадают в атмосферу, то в результате химических реакций они разрушают озоновый слой атмосферы, что становится причиной повышения уровня ультрафиолетовой радиации.
Экосистема
Система взаимодействия и взаимосвязей сообщества живых организмов с окружающей неживой природой.
Эрозия
Разрушение поверхностного слоя почвы осадками и ветром. Приводит к заиливанию водотоков (вследствие чего происходит разрушение пресноводных и морских ареалов), засорению промышленного оборудования (связанного с использованием воды), и вода становится непригодной для питья.
Эрозия почвы
Процесс механического разрушения почвы под действием поверхностного стока (водная эрозия) или ветра (ветровая эрозия).


ЭКОЛОГИЧЕСКИЙ СЛОВАРЬ-СПРАВОЧНИК
(справочные материалы представлены только в разделах от А до Е)

А
АВАРИЙНЫЙ ВЫБРОС (А.в.) - вынужденный выброс в окружающую среду загрязняющих веществ в количестве, которое намного превышает ПДВ. Как правило, А.в. является следствием изношенности оборудования предприятий и нарушения технологий.
АВАРИЯ (экологическая, А.) - выброс производственным объектом в окружающую среду в особо больших количествах загрязняющих веществ (химических, радиоактивных и др.), что делает его последствия опасными для людей, а также для других живых организмов. Вероятность А. возрастает с повышением мощности предприятий и усложнением технологических схем. По этой причине в мире в последние годы возросли количество А. и их масштабы. На частоту А. в РФ влияют и моральный, и физический износ оборудования.
А. постоянно сопровождают транспортировку нефти и нефтепродуктов по трубопроводам, что вызывает загрязнение почв и надземных и подземных вод (включая моря). Ежегодно в РФ происходит более 20 крупных А. на магистральных и до 40 тыс. на внутрипромысловых нефтепроводах. В последние годы участились А. при перевозке нефти морскими судами.
А., повлекшие трагические последствия, называют катастрофами. О масштабах промышленных катастроф, произошедших в мире в XX веке, можно судить по данным, приведенным в табл. 1 (см. также Чернобыль, Кыштым).
АВИАЦИЯ (влияние на окружающую среду, А.), как и все виды транспорта, оказывает значительное влияние на окружающую среду. А. вызывает шумовое загрязнение и изменяет газовый состав атмосферы, выжигая кислород и выделяя диоксид углерода, загрязняет атмосферу оксидом углерода, оксидами азота, углеводородами. Загрязнение атмосферы А. примерно в 8 раз больше, чем автомобилями (в пересчете на перемещение 1 человека на расстояние 1 км). Оксиды азота, выбрасываемые двигателем самолета, в результате фотохимических реакций разрушают озоновый слой. Однако, поскольку А. используется меньше, чем автомобильный и железнодорожный транспорт, в развитых странах, а также и в РФ, загрязнение от А. пока составляет не более 1-3% ущерба, который наносят атмосфере все виды транспорта.
АВТОМОБИЛЬ (А.) - наиболее распространенное средство наземного безрельсового транспорта, важнейший фактор формирования городской (а также отчасти сельской) среды. Число А. в мире превышает 600 млн. На долю А. в крупных городах РФ приходится в среднем 50-60% загрязнения атмосферы. А. выжигает значительное количество кислорода и выбрасывает в атмосферу эквивалентное количество диоксида углерода, что способствует формированию парникового эффекта. В составе выхлопных газов А. содержится около 300 вредных веществ. Основными загрязняющими атмосферу веществами являются оксиды углерода, углеводороды, оксиды азота, сажа, свинец, диоксид серы. Среди углеводородов наиболее опасны бенз(а)пирен, формальдегид, бензол.
При работе А. в атмосферу поступает также резиновая пыль, образующаяся при стирании покрышек. При использовании бензина с добавлением соединений свинца А. загрязняет почвы этим тяжелым металлом (см. Загрязнение почв). Возможно также загрязнение водоемов при мытье А. и при попадании в них отработанного машинного масла. А. являются источником шумового загрязнения.
Под колесами А. гибнут люди. Так, в РФ еженедельно на дорогах погибает 4 человека. В США ежегодные аварии уносят 48 тыс. и калечат не менее 300 тыс. человек. За время использования автомобильного транспорта в США погибло почти 2 млн. человек, что в 2 раза больше потерь американских войск во всех войнах.
А. наносят ущерб животному миру. За 1 км движения легкового А. по открытой местности об его ветровое стекло разбивается до 3 тыс. насекомых. На каждые 27 км городского маршрута А. уничтожает 1 экз. позвоночных (кошки, собаки, мыши, воробьи и др.).
На производство А. затрачивается много энергии и ресурсов, значительная часть которых невозобновима. Для передвижения А. необходимы асфальтовые трассы, значительную площадь занимают гаражи и места парковок. Наибольший вред наносят личные А., так как загрязнение среды при поездке на автобусе в пересчете на одного пассажира значительно меньше.
Снижение отрицательного влияния А. на окружающую среду - важное условие построения общества устойчивого развития (см. Модели мира). Наиболее радикальный способ решения вопроса - сокращение количества А. Однако количество личных А. пока продолжает увеличиваться во всем мире (см. Потребительский подход). Так, за последние 5 лет количество В США на 1000 человек приходится 590 А., в Швеции - 420, в Японии - 285, в Израиле - 145, в Южной Корее - 27, в Китае - 2 А.).
Пока наиболее реальным вариантом решения проблемы является уменьшение вреда от А. за счет снижения затрат горючего. Так, если сегодня средний легковой А. потребляет 6-10 л бензина на 100 км пути, то уже созданы двигатели легковых А., которые расходуют всего 4 л. В Японии компания "Тоёта" готовит к выпуску модель А. с расходом горючего 3 л на 100 км пути.
Загрязнение атмосферы А. уменьшается также при замене бензина на сжиженный газ. Используются специальные добавки-катализаторы к жидкому топливу, увеличивающие полноту его сгорания, бензин без свинцовых добавок. Разрабатываются новые виды топлива. Так, в Австралии (Канберра) апробировано экологически чистое топливо, в составе которого 85% дизельного топлива, 14% этилового спирта и 1% специального эмульгатора, повышающего полноту сгорания горючего. Проводятся работы по созданию двигателей А. из керамики, которые позволят повысить температуру сжигания горючего и уменьшить количество выхлопных газов. В Японии и ФРГ уже появились А., оборудованные специальными электронными устройствами, обеспечивающими более полное сжигание топлива.
В больших городах строятся объездные дороги для междугородных автобусов и грузового транспорта, строятся подземные и надземные транспортные магистрали, поскольку особенно много выхлопных газов выделяется в атмосферу при возникновении "пробок" на перекрестках улиц. В ряде городов движение А. организуется по типу "зеленой волны".
Во многих городах (например, в Куритиба, Бразилия) удалось достичь уменьшения пробега личных автомобилей за счет совершенной организации работы общественного транспорта. По этому пути идут Япония и Венгрия, которые отвергли "американский" путь решения транспортной проблемы преимущественно за счет личных А. Впрочем, и в США в ряде штатов поощряются совместные поездки соседей в одном А. на работу.
Уменьшается экологический вред от А. при сборе и переработке отработанного машинного масла. В Москве при одном из нефтеперерабатывающих заводов создано производство по регенерации 50 тыс. т машинного масла в год. Возможно и повторное использование автопокрышек, на которые наваривается новый протектор.
Преодоление "автомобильной болезни" и сокращение количества личных А. может быть достигнуто за счет повышения цены на А., оборудованные электронными средствами контроля влияния на окружающую среду, и экологически ориентированной налоговой системы. Так, в США введен сверхвысокий "зеленый налог" на машинное масло.
Специальными задачами являются также уменьшение числа устаревших А., которые продолжают использоваться и загрязняют среду больше, чем новые А. (это проблема бедных стран), и утилизация А., поступающих на свалки.
В РФ важную роль должны играть экологические службы ГАИ, контролирующие количество выхлопных газов А.
АВТОТРОФЫ (А.) - организмы, синтезирующие органические вещества из неорганических соединений (как правило, из диоксида углерода и воды), продуценты экосистем, создающие первичную биологическую продукцию. А. находятся на первом трофическом уровне в экосистемах и передают органические вещества и содержащуюся в них энергию гетеротрофам - консументам и редуцентам.
Большинство А. являются фотоавтотрофами, которые имеют хлорофилл. Это - растения (цветковые, голосеменные, папоротникообразные, мхи, водоросли) и цианобактерии. Они осуществляют фотосинтез с выделением кислорода, используя неисчерпаемую и экологически чистую солнечную энергию.
А.-хемоавтотрофы (серобактерии, метанобактерии, железобактерии и др.) для синтеза органических веществ используют энергию окисления неорганических соединений. Вклад хемоавтотрофов в суммарную биологическую продукцию биосферы незначителен, однако эти организмы составляют основу хемоавтотрофных экосистем гидротермальных оазисов в океанах.
АГРЕССИВНАЯ ВОДА (А.в.) - вода, содержащая химические вещества, которые вызывают разрушение металлов, бетона и т. д. Особенно велика агрессивность вод, содержащих соляную и серную кислоты, соли аммония. Агрессивность воды повышается за счет смыва с полей удобрений и образования в дождевых водах кислот из загрязняющих атмосферу диоксидов серы и азота.
АГРОБИОГЕОЦЕНОЗ (А.) - однородный участок агроэкосистемы (севооборот, посев многолетних трав и т. д.), который включает агроценоз (культурные растения, сорные растения, фауну, в том числе почвенную, водоросли, грибы и другие микроорганизмы) и условия среды.
АГРОЛЕСОМЕЛИОРАЦИЯ (А.) - способ повышения биологической продукции и устойчивости агроэкосистем (см. Сестайнинг) с использованием древесных насаждений. Лесные насаждения чередуются с агроценозами и формируют лесоаграрные ландшафты. А. благоприятно влияет на микроклимат, биогеохимические циклы (круговороты) элементов питания и воды, способствует уменьшению сельскохозяйственного загрязнения и (в случае соседства с городами, предприятиями или крупными автомагистралями) промышленного загрязнения атмосферы, воды и почвы.
А. - наиболее экологичный и экономически эффективный способ повышения продуктивности агроэкосистем. Урожай зерновых повышается на 10-15%, и этим с лихвой окупается некоторое сокращение площади пашни для посадки леса. Кроме того, лесные насаждения дают доход как источники древесины, места обитания охотничье-промысловых животных, места отдыха населения и сбора лекарственных трав, грибов и ягод. А. повышает эстетическую привлекательность агроэкосистемы и ее пригодность для целей рекреации.
Поскольку на агроценозы наиболее эффективно влияют зоны контакта с лесом (опушки), считается, что на 1 га пашни должно приходиться не менее 40-60 м опушек.
Основной способ А. - создание лесных полос. В тропических странах А. проводится в форме аллейных посевов.
АГРОМЕЛИОРАЦИЯ (А.) - совокупность организационно-хозяйственных и технических мероприятий для оптимизации почвенных, гидрологических и климатических условий в агроэкосистемах с целью повышения их биологической продукции - урожая сельскохозяйственных культур и выхода продуктов животноводства.
Различают гидромелиорацию, агролесомелиорацию, химическую мелиорацию, культуртехнические работы.
АГРОПОПУЛЯЦИЯ (А.) - популяция культурного растения, сорного растения, насекомого (вредителей или энтомофагов) в пределах однородного участка агроэкосистемы. А. сельскохозяйственных животных - совокупность особей вида одного стада. А. - это вариант локальной популяции, характеризуется размером (численность, плотность) и степенью дифференциации особей.
Плотность А. культурных растений формируется с таким расчетом, чтобы в посеве поддерживался режим конкуренции, благоприятный для культурных растений и неблагоприятный для сорняков. Это не распространяется на А. пропашных культур с широкими междурядьями, в которых плотность А. сорных растений регулируется агротехническими или химическими методами.
Зависимость урожайности и плотности А. культурного растения имеет параболический характер: при увеличении плотности урожайность вначале увеличивается, затем выходит на "плато" и при сильном загущении начинает снижаться. Для подавления А. сорных растений выбирают плотность А. культурных растений несколько выше, чем это целесообразно при полном отсутствии засоренности посева (например, при интенсивной химической прополке).
Дифференциация особей А. культурных растений варьирует в широких пределах: от минимальной (генетически гомогенные сорта, чистые линии) до значительной (гетерогенные сорта, сортосмеси). Возможно повышение уровня дифференциации за счет фенотипических факторов - разных ритмов развития растений при высеве смеси сухих и замоченных семян, пророщенных и непророщенных клубней картофеля, при подсеве семян в междурядья рядков, в которых растения уже тронулись в рост, и т. д. У многолетних трав возможна дифференциация по возрасту. Благодаря дифференциации повышается устойчивость и продуктивность А. культурных растений.
А. сорных растений близки к естественным популяциям растений, дифференциация их особей происходит за счет генотипического и фенотипического разнообразия. Регулярное применение гербицидов уменьшает генотипическое разнообразие А. сорных растений: выпадают экотипы, неустойчивые к действию препарата, и, напротив, массово развиваются растения экотипов, устойчивых к его действию. В итоге при длительном применении гербицидов, в особенности одного и того же препарата, засоренность может возрастать. Человек стремится регулировать плотность А. сорных растений таким образом, чтобы она не превышала порога вредоносности.
А. сельскохозяйственных животных могут существенно различаться. Возможно разделение животных на А. по их хозяйственному назначению (молочное стадо, мясное, молодняка разного возраста, ремонтное, т. е. включающее животных, которые дают потомство) или создание А. из нескольких хозяйственных групп животных. В небольших по размеру хозяйствах целесообразно содержать разновозрастные А. сельскохозяйственных животных, которые более полно используют травостой пастбищ. Еще более оправданы стада из нескольких А. животных разных видов.
За счет генетической пластичности состав А. насекомых (вредителей и энтомофагов) под действием пестицидов изменяется быстрее, чем А. сорных растений. За 10-20 поколений у них формируются экотипы, устойчивые к препаратам (см. Пестициды).
АГРОСТЕПЬ (А.) - полуестественное растительное сообщество, которое создается методом высева сено-семенных смесей, заготавливаемых в естественных степных сообществах. В начале столетия первым использовал этот метод для восстановления растительности прерий в штате Висконсин американский эколог Дж. Кертис, который высевал смесь семян трав, собранных в естественных сообществах.
Этот метод упростил ставропольский ботаник Д. Дзыбов и стал высевать сено-семенную смесь: размельченное сено, скошенное в два срока с таким расчетом, чтобы в него попали семена большинства видов трав. В течение четырех лет после высева в А. происходит вторичная экологическая сукцессия, которая близка к сукцессии на залежи, но протекает несравненно быстрее. Первые два года в А. доминируют эксплеренты (виды рудеральных сообществ), которые массово развиваются из семян банка диаспор в почве, затем они вытесняются степными и луговыми видами, и к 4-6-му году в А. отмечается до 80% видов, присущих естественной степи.
Создание А. - эффективный способ рекультивации эродированных пахотных угодий: формирующаяся дернина надежно защищает почву от разрушения. Урожайность А. выше, чем естественной степи, и, кроме того, питательность сена или пастбищного корма А. может быть улучшена за счет включения в состав посевного материала семян ценных кормовых злаков и бобовых.
АГРОСФЕРА (А.) - часть биосферы, вовлеченная в сельскохозяйственное использование (т. е. занятая агроэкосистемами). На долю А. приходится примерно 30% суши, в том числе около 10% занято пашней, а остальное - естественными кормовыми угодьями. Это соотношение различается в разных районах мира. Динамика земельных ресурсов А. приведена в табл. 2.
Резервы расширения А. исчерпаны, дальнейшее увеличение доли А., особенно за счет уничтожения лесов, будет неминуемо усугублять кризисную ситуацию на планете.
Ресурсы А. разрушаются, поскольку использование земель проводится без соблюдения экологических требований. За последние 50 лет темп потери продуктивной пашни в мире достиг 6 млн. га в год, происходит деградация пастбищ вследствие быстрого наращивания поголовья скота (в 1986 г. оно составляло 5% от всей биомассы животных, в 1990 г. - 20% и при сохранении такой тенденции к 2000 г. достигнет 40%).
Пахотные почвы загрязняются остатками пестицидов и тяжелыми металлами, ухудшаются их физические свойства (происходит разрушение структуры и уплотнение). Колоссальный ущерб А. наносит гидромелиорация. Под влиянием эрозии почв, вторичного засоления почв и перевыпаса происходит процесс опустынивания.
А. также разрушается под влиянием промышленности, в особенности энергетических и металлургических комплексов (см. Кислотные дожди).
Экологическая ситуация в А. особенно ухудшилась после зеленой революции, и это стимулировало развитие агроэкологии и попытки решения проблемы продовольственной безопасности с учетом экологических требований.
АГРОФИТОЦЕНОЗ (А.) - совокупность культурных и сорных растений в пределах однородного участка агроэкосистемы (обычно одного поля), используемого в едином хозяйственном режиме (севооборот, система удобрений и защиты растений).
А. объединяет все фазы севооборота или многолетнюю монокультуру, его состав довольно постоянен. При смене культурных растений в ходе севооборота в почве сохраняется постоянным банк диаспор растений - семян и вегетативных зачатков (корневищ) сорных растений. Возможны А. многолетних трав.
Структура А. изменяется в течение вегетационного сезона - от высева культурного растения до выпадения снега. Происходят не только изменения, связанные с развитием культурных растений (увеличивается их высота, количество побегов, общая биомасса, изменяется ее распределение между вегетативными и генеративными органами), но и сезонная динамика состава и состояния сорных растений, которые в разное время зацветают, дают плоды.
Структура А. изменяется также и от года к году вследствие колебаний климата и в зависимости от фазы севооборота. Во влажный и холодный год рост культурного растения может задержаться и массово развиваются сорняки. Изменения в структуре А. происходят и в результате применения гербицидов.
АГРОЭКОЛОГИЯ (А.) - комплекс наук, исследующих возможности сельскохозяйственного использования земель для получения растениеводческой и животноводческой продукции при одновременном сохранении сельскохозяйственных ресурсов (почв, естественных кормовых угодий, гидрологических характеристик агроландшафтов), биологического разнообразия и защите экологической среды обитания человека и производимой продукции от сельскохозяйственного загрязнения. А. сформировалась как раздел экологии во второй половине ХХ века. Особенно быстро А. развивается в последние два десятилетия в связи с резким ухудшением экологической ситуации в агросфере.
Идеи сохранения ресурсов сельского хозяйства высказывались уже в античные времена римскими прагматиками Колумеллой, Варроном и Плинием Старшим. Предтечи современной А. - А.Т. Болотов (1738-1833) и В.Р. Вильямс (1863-1939). Оба обосновывали необходимость оптимального соотношения между площадью пашни, естественных кормовых угодий и леса и поголовьем скота, при котором обеспечиваются частичная замкнутость круговоротов питательных веществ и сохранение плодородия почв - основного ресурса сельскохозяйственного производства.
Основные методологические установки современной А. - экологический императив, адаптивный подход и обеспечение сестайнинга агроэкосистем.
Главная задача А. - активизация биологического потенциала агроэкосистем и составляющих их элементов на всех уровнях (от отдельного растения и животного до всей агроэкосистемы) и замена значительной части антропогенной энергии внутренней энергией биологических процессов. А. ориентирует на:
селекцию адаптивных сортов растений и пород животных (см. Адаптивная селекция);
создание гетерогенных сортовых агропопуляций и сортосмесей растений и смешанных возрастных и породных групп скота;
использование севооборотов, поликультур;
формирование системы полезных симбиотических связей за счет повышения биологического разнообразия агроэкосистемы;
экологическую оптимизацию структуры агроэкосистем.
Важный аспект А. - разработка методов воздействия на почвы и их население (фауну, микроорганизмы) с целью активизации процессов биологической азотфиксации, гумификации, деструкции остатков пестицидов и управления процессами минерализации органического вещества и нитрификации. Весь комплекс экологически обоснованных воздействий человека на почву объединяется адаптивной системой земледелия (см. также Ландшафтное земледелие).
АГРОЭКОСИСТЕМА (А.) - экологическая система, объединяющая участок территории (географический ландшафт), занятый хозяйством, производящим сельскохозяйственную продукцию. В состав А. входят: почвы с их населением (животные, водоросли, грибы, бактерии); поля-агроценозы; скот; фрагменты естественных и полуестественных экосистем (леса, естественные кормовые угодья, болота, водоемы); человек.
Основные черты А. определяет человек, который стоит на вершине экологической пирамиды и заинтересован в получении максимального количества сельскохозяйственной продукции. При этом, если человек следует экологическому императиву, он сохраняет почвы, биологическое разнообразие, не допускает сельскохозяйственного загрязнения и получает экологически чистую продукцию, а А. приобретает черты устойчивости (сестайнинга).
А. - автотрофная экосистема, основным источником энергии для которой является Солнце. Солнечная энергия усваивается растениями-продуцентами и фиксируется в урожае растениеводческой продукции или передается по пищевым цепям консументам, главные из которых - скот, и редуцентам - прежде всего обитающим в почве животным-детритофагам. Перерабатывая органические остатки, они способствуют деятельности микроорганизмов-редуцентов, которые пополняют запас элементов питания, доступных корням растений. Большую роль в А. играют бактерии-азотфиксаторы, из которых наиболее важны виды, симбиотически связанные с бобовыми, так как при обработке почвы плугом биологическая азотфиксация за счет свободноживущих бактерий снижается в 4-5 раз.
В отличие от естественных экосистем А. более открыты, и из них происходит отток вещества и энергии с урожаем, животноводческой продукцией, а также в результате разрушения почв (дегумификация и эрозия почв). Для компенсации этих потерь и контроля состава А. (регулирование плотности популяций сорных растений, насекомых-вредителей и др.) человек вводит в А. дополнительные элементы питания (азотные, фосфорные и калийные удобрения) и затрачивает энергию на производство, транспортировку и внесение минеральных и органических удобрений и пестицидов, производство и ремонт сельскохозяйственных машин, горючее и т. д. Однако величина антропогенной энергии даже в наиболее энергонасыщенных хозяйствах составляет менее 1% от энергии Солнца, которая фиксируется растениями А. (см. табл. 3).
А. весьма разнообразны и могут различаться по специализации (растениеводческие, животноводческие, комплексные) и по величине вложений антропогенной энергии (экстенсивные, компромиссные, интенсивные). Существуют как небольшие аборигенные фермы, где используется только ручной труд и реже - мускульная сила животных, так и высокомеханизированные хозяйства и скотооткормочные комплексы, потребляющие много антропогенной энергии.
Растениеводческие А. В экстенсивном хозяйстве используется залежно-переложная система земледелия (в условиях лесной зоны - подсечно-огневая система земледелия). В таких системах происходит постоянная ротация (заменяемость) участков пашни и естественной растительности, в результате чего восстанавливается плодородие почв.
При компромиссном хозяйстве почвовосстанавливающую роль играют посевы многолетних трав и однолетних бобовых культур в севооборотах, а также сидераты (зеленые удобрения). В умеренном количестве используются фосфорно-калийные удобрения, а для контроля плотности насекомых-вредителей - биологические методы защиты растений и система полезных симбиотических связей.
В интенсивном хозяйстве сохраняется та же схема производства, что и при компромиссном, но резко увеличиваются дозы минеральных удобрений, возможны полив и использование пестицидов в высоких дозах. Севообороты упрощаются до двух-трех звеньев и не включают сидератов или используется монокультура. С увеличением вложений антропогенной энергии возрастает риск разрушения почв.
Животноводческие А. Экстенсивный вариант - это выпас скота на естественных кормовых угодьях (с сенокошением или без него в зависимости от климата). Вложения антропогенной энергии при этом минимальны и сводятся к затратам на жизнеобеспечение пастухов и первичную обработку животноводческой продукции.
При компромиссном варианте корм производится на естественных кормовых угодьях и на пашне (многолетние травы, пропашные культуры и др.), плодородие почв которой поддерживается внесением навоза, возможно использование невысоких доз фосфорно-калийных удобрений.
При интенсивном варианте животноводческая продукция производится на скотооткормочных комплексах, а корма получают с пашни при высоких вложениях энергии и, кроме того, завозят из других районов (в таких странах, как Нидерланды или Сингапур - даже из других государств). Часть навоза вносится на поля, но его количество оказывается больше, чем можно внести в почву (см. Навоз).
Комплексные А. При низких энерговложениях сохраняется ротация полей и естественных кормовых угодий (часть пашни через определенное время забрасывается для естественного восстановления плодородия, хотя частично оно поддерживается за счет навоза). Минеральные удобрения либо не используются, либо вносятся в низких дозах фосфорно-калийные туки. Обеспечение почвы азотом достигается за счет биологической азотфиксации. Такой вариант хозяйства характерен для альтернативных систем земледелия. По существу такие А. создавал А.Т. Болотов (см. Экологическая оптимизация структуры агроэкосистемы).
При интенсивном варианте производство кормов на естественных кормовых угодьях минимизируется, и с пашни получают как растениеводческую продукцию, так и корм для скота. Дозы вносимых удобрений и пестицидов высокие. Возможен полив.
При компромиссном варианте наиболее полно реализуется адаптивный подход. Площадь пашни ограничена, ее плодородие поддерживается навозом, севооборотами и умеренными дозами фосфорно-калийных удобрений. Контроль сорняков, насекомых-вредителей и болезней культурных растений проводится либо биометодом, либо интегрированным методом защиты растений. Скот получает корм, как на естественных кормовых угодьях, так и с пашни, поскольку в севооборотах значительное место занимают многолетние травы и кормовые однолетние бобовые культуры. Все это позволяет поддерживать достаточно высокую продуктивность А.
Поскольку с увеличением вложений антропогенной энергии затрудняется достижение сестайнинга А., наиболее оправданы экстенсивные животноводческие А. в условиях, где нет возможности получать растениеводческую продукцию, и компромиссные комплексные А.
В первом случае необходимо регулирование пастбищных нагрузок для исключения пастбищной дигрессии. Возможны А. с дистанционным управлением, когда по существу сохраняется естественная экосистема, которая рационально используется. Например, в тундрах животным компонентом А. является дикий олень, в степях - сайгак, в саваннах - сложные многовидовые стада копытных (антилопы, зебры и т. д.), а человек изымает часть животных в соответствии с нормативом максимально допустимого урожая, обеспечивающим сохранность популяций. За счет дифференциации экологических ниш и более полного и равномерного потребления растительной биомассы такие А. могут давать мяса в несколько раз больше, чем А. с одним-двумя видами скота. Повышается эффективность использования пастбищ при совместном содержании скота разных видов и даже при разновозрастном стаде животных одного вида.
Во втором случае главное условие обеспечения сестайнинга - экологическая оптимизация структуры А.
АДАПТАЦИЯ (А.) - приспособление организма к определенным условиям среды за счет комплекса признаков - морфологических, физиологических, поведенческих. В результате А. возникают экологические группы организмов: влаголюбы гидрофиты и "сухотерпцы" ксерофиты; растения устойчивые к затенению и требующие для нормального развития полного солнечного света; животные, которые обитают в лесах или на болотах, ведут ночной или дневной образ жизни. А. объясняется различный состав биоты экосистем разных экологических условий.
Наиболее важны А. к переживанию неблагоприятных условий. Так, у животных существуют три основных направления А.:
уход от неблагоприятных условий (миграция птиц, кочевка оленей и других копытных в поисках корма, зарывание в песок, почву или снег и др.);
переход в состояние анабиоза - резкого снижения активности процессов жизнедеятельности (покоящиеся стадии у беспозвоночных животных, прекращение активности рептилий при низких температурах, зимняя спячка млекопитающих и др.);
развитие приспособлений для жизни в неблагоприятных условиях (шерстный покров и подкожный жир у животных, экономное использование воды у животных пустынь и т. д.).
Растения ведут прикрепленный образ жизни и потому у них возможны лишь два варианта А.: снижение интенсивности процессов жизнедеятельности в неблагоприятные периоды (сбрасывание листьев, перезимовывание в стадии погребенных в почву органов - луковиц, корневищ, клубней, а также семян и спор) или повышение устойчивости к неблагоприятным факторам (см. Патиент, Эксплерент).
У организмов развиваются А. к влиянию биотических факторов (см. Взаимоотношения "хищник - жертва", Взаимоотношения "паразит - хозяин"). Как результат А. рассматриваются положительные взаимоотношения организмов - мутуализм и комменсализм (см. также Коадаптация).
А. у разных групп организмов вырабатываются с разной скоростью. Наиболее быстро А. возникают у насекомых, которые за 10-20 поколений могут приспособиться к действию нового инсектицида, чем объясняются неудачи химического контроля плотности популяций насекомых-вредителей.
В настоящее время в селекции растений и животных широко используется принцип адаптивного подхода, при котором повышается А. организмов к неблагоприятным условиям среды.
АДАПТИВНАЯ СЕЛЕКЦИЯ (А.с.) - выведение сортов культурных растений и пород сельскохозяйственных животных, обладающих высоким адаптивным потенциалом. Дж. Ацци назвал такие сорта сортами-тружениками и противопоставил их сортам-рекордсменам.
Повышение адаптивного потенциала было основой "народной селекции", при которой не ставилась задача получения рекордных урожаев, а ценилась устойчивость растений к неблагоприятным климатическим условиям и болезням. Яркий пример - история возделывания подсолнечника в России. Эта культура была завезена из Америки во времена Колумба (первоначально в Испанию, а затем в Россию) как декоративная. В течение столетия из растений, предназначенных для украшения палисадников, была выведена масличная культура, которая позволила россиянам получить замену дорогого импортного оливкового масла. При этом селекция велась не только на размер корзинки и содержание масла в семенах, но и на устойчивость. Трижды на подсолнечник обрушивались напасти: вначале ржавчина, затем заразиха и, наконец, тля. Вредители и болезни каждый раз почти полностью уничтожали его посевы, но из выстоявших растений удавалось отбирать устойчивые формы.
В основе А.с. культурных растений лежит усиление конкурентной способности и устойчивости к биотическому и абиотическому стрессу.
К адаптивному сорту предъявляются следующие требования:
экологическая пластичность, т. е. способность давать урожай, хотя бы средний, в широком диапазоне колебаний климатических условий;
гетерогенность агропопуляций, т. е. наличие в их составе растений, различающихся по высоте, глубине расположения корневой системы, устойчивости к засухе, срокам зацветания и т. д.;
скороспелость, т. е. способность к быстрому развитию и обгону сорняков в темпах развития;
интенсивность, т. е. способность к быстрому реагированию на улучшение условий выращивания (например, на выпадение осадков);
устойчивость к грибковым и прочим заболеваниям;
малая поражаемость насекомыми и высокая способность к отрастанию при их нападении.
Примером адаптивного сорта является рожь "Сулпан", выведенная башкирским селекционером С.А. Кунакбаевым. Эта культура формирует густой полог и сама справляется с сорняками, не боится насекомых-вредителей, компенсируя поврежденные побеги за счет отрастания новых, и способна давать урожай в засушливые годы за счет эффективного использования осенней и весенней влаги.
При А.с. животных повышение адаптивного потенциала достигается за счет использования в качестве исходного материала пород местного скота, которые более устойчивы к неблагоприятным экологическим условиям и менее требовательны к качеству корма (серая степная порода коров, горская корова на Кавказе, якутский крупный рогатый скот, якутские лошади и др.).
АДАПТИВНАЯ СИСТЕМА ЗЕМЛЕДЕЛИЯ (А.с.з.) - элемент адаптивного подхода, наиболее экологичный и экономичный вариант использования ресурсов почвы при максимальном раскрытии ее биологического потенциала и уменьшении вложений антропогенной энергии. Основу А.с.з. составляют:
севооборот со сбалансированным соотношением почворазрушающих и почвовосстанавливающих культур;
минимизированная обработка почвы (от глубокого безотвального рыхления до посева в стерню);
экологически ориентированная система применения органических и минеральных удобрений;
широкое использование биологических методов защиты растений;
использование сортосмесей и поликультур, многолетних трав, сидератов.
А.с.з. позволяет полностью реализовать требования экологического императива и обеспечивает энергосбережение в сельском хозяйстве, охрану окружающей среды, получение продукции высокого качества.
АДАПТИВНЫЙ ПОДХОД (в сельском хозяйстве, А.п.) - система получения сельскохозяйственной продукции, обеспечивающая максимальную окупаемость биологической продукцией каждой единицы введенной в агроэкосистему антропогенной энергии.
При А.п. подбираются сорта культурных растений и породы сельскохозяйственных животных, наиболее соответствующие почвенно-климатическим условиям района. Так, Н.И. Вавилов писал о том, что земледелие желательно "осеверить", но в хорошо обеспеченном осадками Нечерноземье выращивать не пшеницу, а рожь. Сегодня (наряду с ячменем и овсом) рожь составляет основу растениеводства северных районов Германии, а также Финляндии, Швеции, Норвегии.
Вавилов считал, что в южной части степной зоны пшеницу следует заменить на сорго, которое он образно называл "верблюдом растительного мира". В настоящее время в Италии, Испании и Франции площади посевов сорго увеличились в 30-60 раз. Ведутся работы по адаптивной селекции сорго для южных районов России.
В рамках А.п. расширяется использование видов местной флоры, наиболее приспособленных к местным условиям, развивается адаптивная селекция, экологически оптимизируется структура агрофитоценозов (см. Сортосмесь, Поликультура) и агроэкосистем (см. Экологическая оптимизация агроэкосистем).
При А.п. в животноводстве районируются виды и породы сельскохозяйственных животных, определяются оптимальные границы овцеводства, коневодства, оленеводства, верблюдоводства и т. д. Примером животного, в высокой степени адаптированного к природным условиям степной зоны, является башкирская лошадь. Она не требует зимних помещений, круглый год содержится на открытом воздухе и довольствуется подножным кормом. Влияние же лошадей на травостой пастбищ несравненно более мягкое, чем коров и тем более - овец.
Нарушение требований А.п. ведет к резкому удорожанию сельскохозяйственной продукции или вообще к "нулевому эффекту", когда интродуцированные в новые районы растения или животные не приживаются (примеры: попытки возделывания кукурузы далеко севернее ареала ее распространения или выращивания чайного куста в Закарпатье).
АДАПТИВНЫЙ ПОТЕНЦИАЛ (А.п.) - предел устойчивости культурных растений и сельскохозяйственных животных к неблагоприятным факторам. У культурных растений - к насекомым-вредителям, засоренности посева, болезням, засухе, засолению почвы, холоду. У сельскохозяйственных животных - к холоду, временному дефициту корма, болезням.
Повышение А.п. - основное направление адаптивной селекции.
АККЛИМАТИЗАЦИЯ (А.) - приспособление организмов к новым или изменившимся условиям существования, в которых они проходят все стадии развития и дают жизнестойкое потомство. А. происходит при переселении организмов как в совершенно новые для них места, так и в те места, где они ранее жили, но по разным причинам исчезли. Различают естественную А. диких видов (при миграции животных, переносе семян водными течениями и др.) и искусственную А. сельскохозяйственных животных и культурных растений.
Возможности А. весьма ограниченны. В новых условиях вид может погибнуть либо от прямого действия климата, который окажется для него неподходящим (слишком холодным, слишком жарким, сухим и т. д.), либо он может быть вытеснен из экосистемы более сильным конкурентом или уничтожен хищником (у растений - фитофагом) из числа местных видов. А. может закончиться неудачей и при отсутствии хищника, который регулирует численность расселяемого вида. Пример тому - вселение на остров Сант Матью (Берингово море) оленей при отсутствии там хищников, которые регулировали бы их плотность. В 1944 г. на остров было завезено 29 оленей, к 1963 г. численность их популяции достигла 6000 голов. В итоге была подорвана кормовая база и большая часть оленей погибла.
В то же время, если вид успешно акклиматизировался, то он может стать доминантом экосистемы (см. Натурализация).
В 20-30-х гг. в СССР не раз завозили ондатру, которая расселилась на громадной территории - от Мурманской области и низовий европейских рек до Бурятии. В Аскании-Нова в это время можно было видеть диковинные стада из американских оленей-карибу, зебу, африканских зебр, австралийских страусов и зубров. Однако акклиматизировать удалось сравнительно немногие виды (американская норка, нутрия).
Все это заставляет относиться к А. видов с большой осторожностью и тщательно изучать возможные последствия ее (см. Заносные виды, Реинтродукция).
АККУМУЛЯЦИЯ ВЕЩЕСТВ ОРГАНИЗМАМИ (А.в.о.) - накопление в организмах минеральных элементов и некоторых соединений, находящихся в окружающей среде в низких концентрациях.
На каждом следующем трофическом уровне концентрация аккумулируемых веществ возрастает примерно в 10 раз. В итоге в тканях живых организмов содержание этих веществ может превышать их концентрацию в окружающей среде в тысячи раз. Морские животные асцидии аккумулируют ванадий, его концентрация в теле животного может достигать 0,16%. В Японии этот редкий металл уже добывают из таких "живых месторождений". Активными накопителями металлов являются микроорганизмы.
А.в.о. следует учитывать при контроле загрязнения окружающей среды. Так, концентрация свинца в планктонных животных выше, чем в окружающей среде в 300 раз, а в донных моллюсках - в 4000 раз. У полярных крачек концентрация может увеличиваться даже в 10 млн. раз (рис. 2).
Концентраторами ртути являются рыбы, что может при использовании их в пищу стать причиной тяжелых заболеваний и даже смерти человека. Последствия отравления ртутью получили название "болезнь Минамата" - по названию бухты в Японии, где в 1953-1969 гг. произошли многочисленные отравления рыбой, которая аккумулировала ртуть из сточных вод промышленных предприятий. У побережья Корсики в теле угрей содержание ртути достигает 600 мг на 1 кг. Развитие "болезни Минамата" возможно, если потребление угрей составит 2 кг в неделю на человека.
Эффект А.в.о. может способствовать накоплению в костных и жировых тканях токсичных органических соединений - бенз(а)пирена, диоксинов. В тканях устриц, гагар и других животных содержание ДДТ может быть выше, чем в окружающей среде, в 50-100 тыс. раз. В промышленных городах нередко в результате А.в.о. повышается концентрация загрязняющих веществ в материнском молоке, что делает его опасным для младенцев.
Организмы активно концентрируют радиоактивные изотопы, в особенности опасно накопление в организме изотопов с большим физическим периодом полураспада. А.в.о. в этом случае может происходить как при их попадании в организм с водой и воздухом, так и через посредников в пищевой цепи. Радиоактивный йод, к примеру, вначале усваивается растениями, затем попадает в молоко коров и только после этого - в организм человека. Разные радиоактивные вещества накапливаются в разных органах. Так, упомянутый йод - в щитовидной железе; радон, уран, плутоний, криптон - в легких; сера - в коже; кобальт - в печени; калий и цезий - в мышцах; полоний - в селезенке; рутений - в почках. Практически все радиоактивные элементы накапливаются в костях и печени.
Если принять содержание стронция-90 в воде за единицу, то в донных отложениях оно достигает 200, в водных растениях - 300, в тканях карповых рыб - 1000 , в костях окуня - 3000, в костных тканях животных, питающихся рыбой, - 3900 единиц. Радиоактивные изотопы концентрируются в грибах (особенно в маслятах, моховиках и волнушках), а иногда в тканях птиц и рыб. Это нужно учитывать при использовании продуктов питания, которые могут быть сильно загрязнены даже при невысоком радиоактивном загрязнении окружающей природной среды.
АКСЕЛЕРАЦИЯ (А.) - ускоренное физическое развитие и физиологическое созревание детей и подростков, отмечаемое в последние 100-150 лет в экономически развитых странах. Причины А. до конца не установлены, но решающее значение, видимо, имеет улучшение питания.
АКТИВИРОВАННЫЙ УГОЛЬ (А.у.) - средство очистки воды и газов от загрязняющих веществ. Высокая адсорбирующая способность А.у. обусловлена его очень большой поглощающей поверхностью. А.у. используется в основном для очистки воды в промышленных установках и бытовых фильтрах, но может применяться и для очистки газов. Однако после того, как А.у. поглотит загрязняющие вещества, его необходимо регенерировать (т. е. очистить). В противном случае А.у. превратится из очистителя в загрязнитель.
АЛАРМИЗМ (А.) - представления о неизбежности глобального экологического кризиса вследствие нерегулируемого роста народонаселения планеты, истощения ресурсов, разрушения биологического разнообразия и загрязнения окружающей среды.
Первым последовательным экологом-алармистом был Ж.Б. Ламарк. В начале ХХ столетия он предупреждал человечество, что оно погибнет, разрушив собственную среду обитания. Современный А. не столь пессимистичен, прогнозы не рассматриваются как фатальные: кризиса можно избежать, если изменится отношение общества к природе.
Яркий пример А. - доклады Римского клуба, составленные в 70-е гг. группой ученых, которую возглавлял Аурелио Печчеи. В 90-е гг. после смерти Печчеи в прогнозах Римского клуба А. был в значительной мере преодолен, что отразило успехи в улучшении экологической ситуации в развитых странах (Япония, ФРГ и др.). Тем не менее прогрессирующее глобальное загрязнение среды, экологические катастрофы масштаба Чернобыля или Арала (см. Гидромелиорация), нерегулируемый рост народонаселения, все четче обозначающийся энергетический кризис, резкое уменьшение биологического разнообразия (уничтожение тропических лесов и др.), неудачи международного сотрудничества в области охраны природы и т. д. усилили алармистские настроения не только у экологов, но и у политиков.
В целом А. послужил осознанию сложностей, стоящих перед человечеством. Задачей экологии в союзе с экономикой и этикой (социальной экологией) является аргументированное преодоление алармистского взгляда на мир (см. Модели мира).
АЛЛЕЙНЫЕ ПОСЕВЫ (А.п.) - чередование полос невысоких кустарников или деревьев (чаще из семейства бобовых) с посевами однолетних культур. А.п. не только улучшают микроклимат и защищают почву от эрозии, но и удобряют возделываемые культуры азотом за счет биологической азотфиксации.
АЛЛЕЛОПАТИЯ (А.) - взаимовлияние высших растений путем выделения в окружающую среду биологически активных веществ, называемых колинами. Колины выделяются в почву (корневые выделения), в атмосферу (газообразные вещества с сильным запахом) и воду (смывы с листьев), а также при разложении мертвого органического вещества, например при перегнивании лесной подстилки. Считается, что роль колинов во взаимоотношениях растений вторична, первично они использовались растениями для отпугивания насекомых-фитофагов.
Эффект А. могут вызывать и продукты разложения растений, что особенно важно в лесных экосистемах, где лесная подстилка может влиять на прорастание семян лесообразующих пород.
Факт существования А. бесспорен и подтвержден в экспериментах сотни раз. Со времен Теофраста известно, что под пологом грецкого ореха не растут другие плодовые культуры. Под интродуцированными на Кавказ австралийскими эвкалиптами из-за аллелопатических выделений из опавших листьев не могут расти местные виды трав.
Однако роль А. в естественных экосистемах невелика, так как в них нет условий, при которых концентрация колинов повышается до уровня, когда они могут существенно влиять на растения. Кроме того, длительно совместно обитающие растения приспособлены к аллелопатическим выделениям друг друга. Возможно, что колины корней играют роль в обеспечении равномерности их распределения в почве, подавая сигнал "занято". Впрочем, оценить вклад А. во взаимоотношения между видами растений очень сложно, потому что она тесно переплетается с другими вариантами взаимоотношений организмов и в первую очередь - с конкуренцией.
А. является одним из факторов снижения урожая при длительном возделывании одной культуры на поле (монокультуры), вызывающем почвоутомление.
К А. близки другие варианты химических взаимовлияний организмов. Так, летучие вещества, с помощью которых высшие растения влияют на микроорганизмы, а иногда и на насекомых, называются фитонцидами. Микроорганизмы влияют друг на друга, выделяя антибиотики.
АЛЛЕРГИЯ (А.) - одна из наиболее распространенных болезней, связанная с чрезмерной иммунной реакцией организма на аллергены (химические вещества, загрязняющие атмосферу, воду, пищевые продукты, а также лекарства, пыльца растений, шерсть домашних животных и т. д.). Разные аллергены могут взаимодействовать. Например, загрязнение атмосферы диоксидом серы усиливает аллергическую реакцию на пыльцу. Установлена прямая зависимость между количеством больных А. и общей экологической неблагоприятностью среды обитания человека.
АЛЬТЕРНАТИВНЫЕ ИСТОЧНИКИ ЭНЕРГИИ (А.и.э.) - собирательное понятие, объединяющее любые источники энергии, при использовании которых существенно не загрязняется окружающая среда (см. Нетрадиционная энергетика).
АЛЬТЕРНАТИВНЫЕ СИСТЕМЫ ЗЕМЛЕДЕЛИЯ (А.с.з.) - способы получения сельскохозяйственной продукции без использования химических средств защиты растений и минеральных удобрений (иногда в небольших количествах используют очищенные фосфорные удобрения, такие, как томас-шлак), а также без стимуляторов роста и других химических препаратов при содержании скота. Основа А.с.з. - севообороты с участием сидератов и навоза.
Продукты питания, произведенные на экологически чистых фермах (обычно диетические или для детского питания), в 2-4 раза дороже, а их качество подтверждается специальным сертификатом. В ФРГ такой сертификат можно получить не раньше чем через пять лет после полного прекращения использования химикалий.
Перспективы А.с.з. ограничены, так как полный отказ от удобрений неминуемо ведет к снижению урожая. По этой причине фермы, где используются А.с.з., не играют существенной роли в производстве сельскохозяйственной продукции. Даже в развитых странах (ФРГ, США) на их долю приходится менее 1% от общего числа аграрных предприятий. Наиболее перспективны компромиссные системы земледелия (см. Агроэкосистема).
АМЕНСАЛИЗМ (А.) - взаимоотношения организмов, при которых один из них подавляет другой без извлечения пользы для себя и без обратного отрицательного влияния со стороны подавляемого.
Пример А. - затенение деревом растущего под ним травянистого растения.
АММИАК (А.) - бесцветный газ (химическая формула - 4), важное звено в круговороте азота в биосфере, продукт деятельности микроорганизмов-азотфиксаторов, связывающих атмосферный азот. Кроме того, А. - промежуточный продукт производства в химической промышленности, из которого получаются азотные минеральные удобрения, азотная кислота, синтетические волокна. При попадании в окружающую среду А. является опасным загрязнителем атмосферы и воды.
АНАБИОЗ (А.) - состояние организма, при котором жизненные процессы настолько замедляются, что отсутствуют видимые проявления жизни. А. - это адаптация организма к неблагоприятным внешним условиям. Широко представлен у растений (зимний покой, скрытая жизнь семян, высыхание мхов и др.) и животных (зимняя спячка млекопитающих, почти полное обезвоживание беспозвоночных - коловраток, нематод и др.).
Наиболее стойки к высушиванию, охлаждению и нагреванию спорообразующие бактерии, микроскопические грибы и простейшие (образующие цисты). В состоянии А. некоторые бактерии могут переносить понижение температуры до минус 250оС.
АНЕМОХОРИЯ (А.) - распространение плодов (и семян) растений с помощью ветра. А. широко распространена у видов, заселяющих новые или нарушенные местообитания. Например, у многих представителей семейства сложноцветных (осот, бодяк, крестовник и др.) семянки снабжены волосками (у одуванчика они имеют вид парашюта), которые облегчают парение в воздухе и позволяют им переноситься на значительные расстояния. Волоски развиты на семенах ивовых (ивы, осина) и кипрейных (иван-чай). Образующиеся в огромных количествах семена тополя дают хорошо известный горожанам тополиный пух. Перекати-поле - замечательный пример А. у степных и пустынных растений.
АНТРОПОГЕННАЯ НАГРУЗКА (А.н.) - степень воздействия человека, его деятельности на природу. А.н. включает использование ресурсов популяций видов, входящих в экосистемы (охота, рыбная ловля, заготовка лекарственных растений, рубка деревьев), выпас скота, рекреационное воздействие (см. Рекреация), загрязнение (сброс в водоемы промышленных, бытовых и сельскохозяйственных стоков, выпадение из атмосферы взвешенных твердых веществ или кислотных дождей) и др. Если А.н. изменяется год от года, то она может быть причиной флюктуаций экосистем, если действует на экосистемы постоянно - то причиной экологической сукцессии. При рациональном природопользовании А.н. регулируются с помощью экологического нормирования до уровня, который безопасен для экосистем.
АНТРОПОГЕННАЯ ЭНЕРГИЯ (в агроэкосистеме, А.э.) - энергия, получаемая человеком, как правило, из исчерпаемых источников и затрачиваемая на поддержание состава и структуры агроэкосистемы. А.э. поступает в агроэкосистему в форме связанной энергии, уже затраченной на производство сельскохозяйственной техники, удобрений, пестицидов, горючего и т. д. Прямые затраты А.э. в сельском хозяйстве составляют не более 50% (в том числе на горючее - 35%), остальную часть составляют косвенные затраты (30% - на производство сельскохозяйственных машин). Однако при этом даже самые высокие вложения А.э. в агроэкосистему составляют не более 1% ее энергетического бюджета, основа которого - неисчерпаемая экологически чистая солнечная энергия.
Основные статьи прямых затрат А.э. в агроэкосистеме следующие.
1. Растениеводство (получение первичной биологической продукции):
селекция и семеноводство (энерготраты за пределами конкретной агроэкосистемы - на селекционных станциях, в научно-исследовательских институтах, на сортоучастках, в семеноводческих хозяйствах и т. д.);
обеспечение условий для развития растений (вспашка, культивация, контроль засоренности посевов, насекомых-вредителей, болезней);
улучшение условий почвенного питания растений (минеральные и органические удобрения, полив);
сохранение семян культурных растений в зимнее время (энергия для зернохранилищ).
2. Животноводство (конверсия первичной биологической продукции во вторичную):
производство и подготовка кормов к скармливанию (заготовка сена, выращивание корнеплодов и зерна на кормовые цели, силосование, приготовление сенажа и комбикорма, запаривание соломы и т. д.);
поддержание оптимальной температуры среды обитания животных в зимний период (строительство и отапливание животноводческих помещений);
обеспечение высокой продуктивности животных (удойность, привесы, настриг шерсти, яйценоскость и др.) за счет использования химических стимуляторов, витаминов, антибиотиков и т. д.
3. Транспорт (перенос вещества и энергии внутри агроэкосистемы, между агроэкосистемами и городскими экосистемами или между несколькими агроэкосистемами):
перемещение вещества по пищевой цепи "продуцент - консумент" (подвоз кормов);
перемещение вещества в обратном направлении (вывоз навоза на поля);
отток вещества из агроэкосистемы (вывоз готовой продукции на элеватор, мясокомбинат и т. д.);
приток вещества в агроэкосистему (завоз семян, удобрений, горючего, техники, строительных материалов и т. д.).
Не все эти статьи одинаково расточительны. Наибольшее количество А.э. затрачивается на горючее для работы сельскохозяйственной техники, на производство удобрений (в первую очередь азотных) и самой техники.
История сельского хозяйства - это история последовательного наращивания вложения А.э. и энергетического удорожания производимой продукции. Если "с огорода папуасов" на 1 Кал мышечной энергии получается 15 Кал пищи, то в современном высокомеханизированном и химизированном хозяйстве это соотношение обратное (на 15 Кал А.э. получается 1 Кал пищи).
Экономический эффект от наращивания величины А.э. подчиняется действию закона убывающей эффективности (например, чтобы поднять урожайность пшеницы с 10 до 15 ц/га, нужно гораздо меньше А.э., чем для получения дополнительных 5 ц при исходном урожае 25 ц/га). Поэтому для удвоения урожайности сельскохозяйственных культур в США в первой половине нашего столетия потребовалось увеличить вложения А.э. в 10 раз.
Общей тенденцией развития современного сельского хозяйства является энергосбережение (см. также Адаптивный подход).
АНТРОПОГЕННЫЕ СУКЦЕССИИ (А.с.) - экологические сукцессии, которые протекают под влиянием деятельности человека.
А.с. вызываются либо постоянно действующим внешним фактором (выпас, вытаптывание, загрязнение), либо представляют процесс восстановления экосистем после их нарушения человеком (зарастание залежи, восстановление пастбищ после прекращения интенсивного выпаса, восстановление леса на вырубке и др.). В современной биосфере А.с. играют огромную роль. Необходим экологический мониторинг А.с. с целью прогноза их дальнейшего развития и разработки подходов управления А.с. для уменьшения вреда, который человек наносит биосфере.
А.с. очень разнообразны. Они могут иметь разную длительность (от нескольких лет до тысячелетий), быть прогрессивными (сопровождаются повышением биологической продукции экосистем и их видового богатства) или регрессивными (значения этих показателей уменьшаются).
АНТРОПОГЕННЫЕ ФАКТОРЫ (А.ф.) - факторы, обязанные своим происхождением деятельности человека. А.ф. могут влиять на целые экосистемы и их части (организмы, популяции, сообщества, биоценозы). А.ф. могут опосредствоваться через влияние биотических факторов (при уничтожении некоторых видов или, напротив, при интродукции видов) и абиотических факторов (влияние на климат, загрязнение атмосферы, воды и др.). Результатом действия А.ф. могут быть нарушения (резкие изменения) или антропогенные сукцессии.
В настоящее время А.ф. являются важным фактором нарушения биосферы. Для ограничения влияния А.ф. осуществляются экологический мониторинг и экологическое нормирование. Контроль и снижение интенсивности влияния А.ф. являются одним из главных условий построения общества устойчивого развития (см. Модели мира).
АПВЕЛЛИНГ (А.) - подъем глубинных холодных вод, насыщенных питательными элементами, к поверхности океана. Устойчивый А. формируется в некоторых местах Мирового океана в результате сложного взаимодействия разных течений.
В зоне А. наблюдается, как правило, высокая биологическая продукция. Для зон А. характерны укороченные пищевые цепи, причем в фитопланктоне преобладают диатомовые водоросли, а в нектоне - сельдевые рыбы.
Районы А. - места промысла рыбы. Так, в прибрежных водах тихоокеанского побережья Чили и Перу благодаря А. крайне многочисленны анчоусы, которыми питаются прибрежные морские птицы - бакланы, пеликаны и др. Подсчитано, что 5 млн. птиц ежегодно съедают до 1000 т анчоусов (а в отдельные годы численность птиц возрастает до 27 млн. особей). Это не мешает ежегодно вылавливать 10-12 млн. т анчоусов. Однако в те годы, когда в восточной части Тихого океана благодаря сильным ветрам с запада у поверхности образуется мощный слой теплой воды (явление Эль-Ниньо), А. выражен очень слабо, что отражается резким снижением продукции фитопланктона и падением уловов анчоуса до 2 млн. т и менее.
АРЕАЛ (А.) - область распространения организмов определенного вида, рода, семейства или какой-либо другой систематической категории. В настоящее время под действием антропогенных факторов А. многих видов растений и животных, связанных с естественными экосистемами, уменьшились и стали прерывистыми. В то же время А. видов, адаптированных к хозяйственной деятельности человека, напротив, расширяются. В степной зоне РФ, к примеру, за последние годы резко сократились и стали прерывистыми А. многих видов ковылей (перистого, Залесского, красивейшего, Лессинга), однако расширился А. устойчивого к выпасу ковыля-волосатика.
А. исследуются биогеографией (ботанической географией и зоогеографией). Эти науки используют специальные классификации А., которыми отражаются закономерности распределения видов по широтному градиенту (т. е. по зонам - арктическая, таежная, широколиственных лесов, лесостепная, степная, полупустынная, пустынная), по географическим секторам (дальневосточный, восточно-сибирский, западно-сибирский, восточно-европейский, западно-европейский и др.) и по высотным поясам (субальпийский, альпийский и др.).
А. разных видов различаются по размеру, есть виды-эндемики, которые распространены на небольшой территории (иногда на одной вершине горы), и, наоборот, имеющие А., которые охватывают несколько материков. Широкие А. характерны для видов, распространение которых связано с деятельностью человека.
Анализ А. видов естественной флоры и фауны - элемент биологического мониторинга и системы охраны флоры и фауны.
АРКТИЧЕСКИЕ ПУСТЫНИ (А.п.) - территории, расположенные к северу от зоны тундр и представляющие экосистемы с очень низкой биологической продукцией, чередующиеся с вечными льдами и снегами. Они занимают острова Земли Франца-Иосифа, Северную Землю, Гренландию и др.
А.п. отличаются бедностью состава биоты. Из растений представлены преимущественно лишайники и мхи, реже цветковые. Животный мир также беден, но иногда встречаются лемминги, песец и даже белый медведь.
АСБЕСТ (А.) - материал, имеющий волокнистое строение (содержит магнезиальные силикаты, примеси железа, алюминия, кальция). А. используется для изготовления шифера, шпаклевок, оконных замазок, автомобильных прокладок и т. д. При истирании изделий из А. воздух загрязняется невидимыми глазом мельчайшими волоконцами, которые внедряются в легочную ткань человека и могут вызывать рак. Специалисты считают, что каждый пятый больной раком легких в США заболел из-за попадания в его легкие пыли А. Ставится задача резкого уменьшения количества А., используемого в промышленности, и даже полный отказ от него. В настоящее время имеется уже несколько сотен заменителей А. В РФ производство шифера, изготавливаемого на основе асбестоцемента, между тем продолжается, и этот экологически опасный материал широко используется при строительстве домов в сельской местности и дачном строительстве.
АСТМА (А.) - один из вариантов аллергии, выражающийся в затруднении дыхания. Количество больных А. в РФ достоверно связано с загрязнением атмосферы (в первую очередь диоксидом серы). За последние 10 лет количество больных А. в РФ увеличилось в несколько раз.
АСФАЛЬТ (А.) - смесь битумов (60-75% в природном А. и 13-60% в искусственном - полимеризованных углеводородов, получаемых из остатков нефтехимического производства) и различных минеральных веществ (песок, галька и др.). А. широко используется для покрытия улиц и площадей в городах, при строительстве шоссейных дорог и при производстве толя (влагоизолирующего материала). Есть данные о канцерогенности А.
АТМОСФЕРА (А.) - газообразная оболочка Земли, состоящая из смеси разных газов, простирающаяся примерно на 100 км (строгой верхней границы А. не существует). В А. различают:
тропосферу - нижний 12-километровый слой, влияющий на погоду; в ней содержатся взвешенные в воздухе водяные пары, перемещающиеся при неравномерном нагреве поверхности планеты; составляет 2/3 массы всей А.;
стратосферу - достигает высоты 50 км; она включает озоновый слой с максимальной концентрацией озона на высоте от 20 до 30 км;
мезосферу - находится на высоте от 50 до 85 км;
ионосферу - слой выше 85 км (простирается до 400 км).
С высотой меняются химический состав и физические свойства А. Главные составляющие А.: азот (78%) и кислород (20,95%), аргон (0,93%), диоксид углерода (0,03%). Количество последнего в настоящее время возрастает (см. Парниковый эффект). В результате хозяйственной деятельности человека в А. увеличивается количество метана, оксидов азота и других газов, вызывающих такие неблагоприятные явления, как парниковый эффект, разрушение озонового слоя, кислотные дожди, смог.
В табл. 4 приведены основные загрязнители и показано их участие в атмосферных процессах.
Между А. и земной поверхностью происходит постоянный обмен теплом, влагой и химическими элементами (см. Круговорот воды, Круговорот углерода, Круговорот азота, Круговорот кислорода).
АТОМНЫЕ ЭЛЕКТРОСТАНЦИИ (АЭС) - электростанции, вырабатывающие энергию за счет "сжигания" ядерного топлива (управляемой термоядерной реакции). Важнейшая часть ядерного реактора - тепловыделяющие элементы - представляет собой кассету стержней, содержащих диоксид урана, заключенный в оболочку из прочного сплава высококачественной стали с цирконием. Срок их службы около трех лет, после чего стержни становятся самой опасной фракцией радиоактивных отходов высокой активности. Возможна их переработка при замкнутом ядерном топливном цикле или захоронение (открытый топливный цикл).
Существует несколько типов АЭС, на которых используются разные типы реакторов (установок, в которых получается тепло от термоядерных реакций), водяные реакторы, реакторы-размножители на быстрых нейтронах, высокотемпературные реакторы, водно-графитовые реакторы большой мощности (преобладающий тип реакторов в странах бывшего СССР). АЭС влияют на окружающую среду не только в результате радиоактивного загрязнения, особенно при авариях, но и как сильный фактор теплового загрязнения. Использование тепловых отходов АЭС затруднено их удаленностью от больших поселений и высокой мощностью.
На АЭС накапливаются радиоактивные отходы. Существуют строгие экологические нормативы предельно допустимых радиационных нагрузок на работников АЭС.
АТТРАКТАНТЫ (А.) - выделяемые животными вещества (или их синтетические аналоги), которые играют роль химических сигналов, привлекающих особей своего вида. Диапазон действия А. - от нескольких миллиметров до нескольких километров. Наиболее хорошо изучены половые А., которые привлекают партнеров для спаривания. К А. также относятся запахи, привлекающие насекомых к объектам питания и к субстрату для откладывания яиц.
Большинство А. действуют в очень низких концентрациях. Так, А. самки тутового шелкопряда может привлечь самца при концентрации 3х10-19 г в 1 см3 воздуха.
Некоторые растения имитируют половые А. животных. Так, тропические орхидеи привлекают самцов некоторых насекомых-опылителей, имитируя половые А. их самок.
Синтетические аналоги А. являются элементом биологических методов защиты растений. Они, например, используются в ловушках для насекомых-вредителей (стенки ловушек намазаны клеем с запахом А.).
АУТЭКОЛОГИЯ (А.) - раздел экологии, изучающий влияние факторов окружающей среды на отдельные организмы, популяции и виды (растений, животных, грибов, бактерий). Задача А. - выявление физиологических, морфологических и прочих приспособлений (адаптаций) видов к различным экологическим условиям: режиму увлажнения, высоким и низким температурам, засолению почвы (для растений). В последние годы у А. появилась новая задача - изучение механизмов реагирования организмов на различные варианты химического и физического загрязнения (включая радиоактивное загрязнение) среды.
Теоретическая основа А. - ее законы.
Первый закон А. - закон оптимума: по любому экологическому фактору любой организм имеет определенные пределы распространения (пределы толерантности). Как правило, в центре ряда значений фактора, ограниченного пределами толерантности, лежит область наиболее благоприятных условий жизни организма, при которых формируется самая большая биомасса и высокая плотность популяции. Напротив, у границ толерантности расположены зоны угнетения организмов, когда падает плотность их популяций и виды становятся наиболее уязвимыми к действию неблагоприятных экологических факторов, включая и влияние человека (рис. 3).
Второй закон А. - индивидуальность экологии видов: каждый вид по каждому экологическому фактору распределен по-своему, кривые распределений разных видов перекрываются, но их оптимумы различаются (рис. 4). По этой причине при изменении условий среды в пространстве (например, от сухой вершины холма к влажному логу) или во времени (при пересыхании озера, при усилении выпаса, при зарастании скал, см. Экологическая сукцессия) состав экосистем изменяется постепенно. Известный российский эколог Л. Г. Раменский сформулировал этот закон образно: "Виды - это не рота солдат, марширующих в ногу".
Третий закон А. - закон лимитирующих (ограничивающих) факторов: наиболее важным для распределения вида является тот фактор, значения которого находятся в минимуме или максимуме. Например, в степной зоне лимитирующим фактором развития растений является увлажнение (значение находится в минимуме) или засоление почвы (значение находится в максимуме), а в лесной - ее обеспеченность питательными элементами (значения находятся в минимуме).
Законы А. широко используются в сельскохозяйственной практике, например, при выборе сортов растений и пород животных, которые наиболее целесообразно выращивать или разводить в конкретном районе (см. Адаптивный подход).
АЦИДОФИЛЫ (А.) - растения кислых почв. Типичными А., обитающими на наиболее кислых субстратах (рН 3,5-4,5), являются растения сфагновых болот: клюква, багульник, сфагновые мхи. На сильно кислых почвах растут и вереск, белоус, щучка извилистая, щавелек малый. На среднекислых и слабокислых почвах (рН 4,5-6,5) обитают полевица собачья, щучка дернистая, погремок большой. А. могут использоваться как индикаторы кислых почв, что имеет практическое применение. Например, появление в луговом травостое большого количества А. свидетельствует о нежелательном направлении изменения почв и начавшемся вырождении луга и, следовательно, о необходимости известкования почвы.
АЭРОЗОЛЬ (А.) - взвешенные в газообразной среде жидкие или твердые частицы. А. являются опаснейшими элементами химического загрязнения атмосферы. Обычно размеры частиц А. лежат в пределах 0,001-1000 мкм. Наиболее опасными для легких человека являются частицы от 0,5 до 5 мкм, более крупные задерживаются в полости носа, а более мелкие в дыхательных путях не оседают и выдыхаются. Среди А. различают пыли (твердые частицы, взвешенные в газообразной среде), дымы (продукты конденсации газа) и туманы (жидкие частицы в воздухе). В настоящее время в атмосфере взвешено не менее 20 млн. т частиц, из которых примерно 3/4 - выбросы промышленных предприятий (см. Смог). Естественным источником А. служат вулканы, гейзеры, разрушающиеся горные породы, пылевые бури, почвенная эрозия и пожары.
АЭРОЗОЛЬНЫЕ УПАКОВКИ (А.у.) - баллончики с красками, лаками, дезодорантами, препаратами и др., находящимися под давлением и дозированно распыляющимися.
Удобство А.у. стало причиной их широкого распространения во всем мире. В 70-е гг. стало известно, что содержащиеся в А.у. фреоны (хлорфторуглероды, ХФУ) вызывают разрушение озонового слоя атмосферы. По этой причине в настоящее время начат выпуск А.у., не содержащих фреоны. Экологически целесообразно по возможности сократить производство А.у., заменив их там, где можно, альтернативными вариантами (пульверизаторы и др.)
Б
БАЗИС ЭРОЗИИ - [гр. basis - основание] - горизонтальная поверхность, на уровне которой водоток теряет свою силу и водная эрозия прекращается. Различают: общий Б.э. - уровень Мирового океана и местные Б.э. - уровень воды в озере, месте впадения притоков в реку, выходов твердых пород, запруживающих реку, и др.
БАКТЕРИИ (Б.) - прокариотические (безъядерные) микроорганизмы, которые играют важную роль в функционировании любых экосистем и биосферы в целом. Им принадлежит ведущая роль в круговоротах элементов питания (см. Редуценты). Б. регулируют плотность популяций организмов (см. Паразиты), вступают с растениями и животными в симбиотические отношения.
Б. очень разнообразны и различаются по типам питания на следующие группы:
*фототрофы, использующие энергию солнечного света; содержат пигменты (хлорофиллы и каротиноиды) и потому окрашены в красный, оранжевый, зеленый и сине-зеленый цвета; в этой группе есть Б., которые фотосинтезируют без выделения кислорода и с выделением кислорода (см. Цианобактерии);
*хемоавтотрофы, использующие энергию окисления неорганических веществ (соединений серы, метана, аммиака, нитритов, соединений двухвалентного железа и других металлов, см. Хемоавтотрофные экосистемы);
*органотрофы, получающие энергию при разложении органических веществ до минеральных соединений; эти Б. - главные редуценты экосистем, обеспечивающие многократное использование элементов питания растениями, основные участники круговорота углерода; к этой же группе относятся Б., использующие энергию брожения (благодаря которым из молока получается кефир и кумыс, сочные стебли кукурузы и подсолнечника превращаются в силос), Б., населяющие желудок жвачных животных (они расщепляют клетчатку), Б., живущие на коже человека и разлагающие вещества, выделяемые с потом;
*Б.-паразиты, вызывающие разные заболевания, в том числе туберкулез (палочка Коха), чуму (чумная палочка); разные спирохеты вызывают тиф, сифилис, желтуху и многие другие болезни.
Б. используются в биологических очистных сооружениях как аэробного (аэротенки), так и анаэробного (метантенки) типов.
БАКТЕРИОЛОГИЧЕСКОЕ ЗАГРЯЗНЕНИЕ - см. в ст. Загрязнение биологическое, а также Коли-индекс и Микробное число.

БАЛАНС ВОДНЫЙ [от фр. balance - весы] - соотношение за какой-либо промежуток времени (год, месяц) прихода и расхода воды для речного бассейна, озера, планеты в целом или иного исследуемого объекта.

БАЛАНС МАТЕРИАЛЬНЫЙ - соотношение прихода и расхода вещества с учетом возможности его прошлого или настоящего накопления за выбранный интервал времени для рассматриваемого объекта; материальный баланс может рассчитываться для отдельной технологической операции, технологического процесса, отдельного производства, предприятия в целом, а также для природных объектов (см., напр., Бассейновый подход).

БАЛАНСОВЫЕ МЕТОДЫ - совокупность приемов, позволяющих исследовать и прогнозировать развитие природных объектов путем сопоставления прихода и расхода вещества, энергии и других потоков. В основе Б.м. лежит баланс (см., напр., Баланс водный), оценивающий количественно движение потока в пределах анализируемого объекта.
БАНК ДИАСПОР РАСТЕНИЙ (Б.д.р.) - запас покоящихся жизнеспособных зачатков растений (семян, вегетативных почек, спор), которые накапливаются в почве и позволяют растениям переживать неблагоприятные периоды.
Банк семян особенно велик в пахотных почвах под сегетальными сообществами, в которых значительная часть видов отличается очень высокой семенной продуктивностью (одно растение мари белой способно давать до 100 тыс. семян, а дискурении Софии - до 1 млн. семян), количество семян может составлять от 0,5 до 4 млрд. шт./га. Этот запас поддерживается за счет постоянного "семенного дождя" и очень медленно истощается благодаря тому, что многие виды сорных растений образуют семена, запрограммированные на разный период покоя. При отсутствии условий для прорастания семена сорняков могут сохранять всхожесть десятки лет (есть данные, что прорастали семена из археологических образцов возрастом несколько сотен лет).
Истощение запаса семян в почве является сложной агрономической проблемой. Для ее решения провоцируют прорастание семян (одно-двухкратное лущение с последующей зяблевой вспашкой) и принимают профилактические меры для того, чтобы не допустить пополнения банка за счет обсеменения сорняков.
Величина банка семян под луговой растительностью по сравнению с пашней ниже на один порядок и колеблется от нескольких единиц до десятков миллионов семян на 1 га. Еще меньше запас семян в лесных почвах, причем характерно, что в составе Б.д.р. отсутствуют семена доминантов из числа многолетних злаков, разнотравья и деревьев. В обоих случаях Б.д.р. формируют однолетние виды-эксплеренты, которые отсутствуют в ненарушенных сообществах, но дают мощную вспышку обилия при их нарушении. Эти виды открывают первую стадию вторичной восстановительной экологической сукцессии при уничтожении сообщества и выступают в роли "ремонтной бригады" при локальных нарушениях. Основная часть семян сконцентрирована в слое 0-20 см, но имеются жизнеспособные семена и на глубине до 0,5 м, куда они доставляются насекомыми или землероями.
Банк вегетативных зачатков - это запас почек на подземных органах (корневищах, корнях, луковицах). Он играет важную роль в размножении растений лугов и степей и нередко определяет состав сегетальных сообществ и засоренность посевов корневищными (пырей ползучий, хвощ полевой) или корнеотпрысковыми (осот, бодяк, льнянка) сорняками. Величина этого варианта Б.д.р. может быть значительной. Так, суммарная длина подземных вегетативных органов (корневищ и корневых отпрысков) может достигать 50 км на 1 га, что соответствует примерно 700-900 тыс. вегетативных почек.
При контроле численности вегетативно размножающихся сорняков проводятся специальные мероприятия по провоцированию прорастания почек и подавлению развивающихся побегов. Б.д.р. корнеотпрысковых сорняков снижают многократным лущением стерни осенью, что не дает этим сорнякам накопить запас питательных веществ, необходимых для зимовки и весеннего прорастания почек. Б.д.р. корневищных сорняков снижают по методу В. Р. Вильямса - измельчают корневища дисковыми орудиями и запахивают их глубоко в почву, или так называемой вспашкой "на перегар" - летней обработкой почвы с оборотом пласта, при которой корневища выносятся на поверхность и гибнут от перегрева и пересыхания.
Сохранение запаса вегетативных зачатков на лугу, напротив, обеспечивает получение стабильных урожаев, что достигается ритмичным использования луга с предоставлением растениям возможности подготовиться к зиме и применением удобрений, которые способствуют разрастанию корневищ злаков.
От Б.д.р. нужно отличать банк проростков растений. Наиболее часто он формируется у деревьев, которые не имеют Б.д.р. Их семена быстро прорастают и дают всходы, которые длительное время (от трех до восьми лет) могут существовать в угнетенном состоянии. Если из древостоя выпадает взрослое дерево и улучшаются условия освещенности (образуется "окно"), проростки трогаются в рост и заполняют освободившееся место.
БАРЬЕР ГЕОГРАФИЧЕСКИЙ - любая географическая преграда (водное пространство, горы), препятствующее обмену генами между близкородственными популяциями.

БЕДСТВИЕ СТИХИЙНОЕ - любое разрушительное, как правило, непредотвратимое природное явление: землетрясение, наводнение, тайфун, извержение вулкана, засуха, опустынивание, массовое размножение вредителей, пыльные бури, отсутствие насекомых-опылителей, угрожающее урожаю и др. Среди Б.с. самыми опасными, по данным ООН, являются циклоны, особенно тропические. С 1947 по 1970 г. тайфуны стали причиной гибели 754 тыс. человек, от наводнений погибло 173 тыс. человек, от землетрясений - 151 тыс., от извержений вулканов - 72 тыс. От жестоких засух в зоне Сахеля (переходной от пустыни Сахары к саванне) в 1941-1942, 1972-1975 и начале 1980-х гг. погибло около 2 млн. человек (эксперты ООН полагают, что с 1972 по 1975 г. там умерли почти все дети до 2 лет). Антропогенная нагрузка пока, как правило, приводит к возрастанию вероятности и глубины воздействия Б.с. См. Неблагоприятные и опасные природные явления (НОЯ).

БЕДСТВИЕ ЭКОЛОГИЧЕСКОЕ - стихийное бедствие или авария промышленная, вызвавшая серьезное нарушение равновесного состояния экосистем (окружающей среды).

БЕЗОПАСНОСТЬ ЭКОЛОГИЧЕСКАЯ - положение, при котором отсутствует угроза нанесения ущерба природной среде и здоровью населения. Б.э. может быть количественно оценена степенью риска экологического (в этом аспекте Б.э. имеет место тогда, когда риск не превышает некоторого приемлемого уровня) и достигается совокупностью мероприятий, направленных на снижение отрицательного антропогенного воздействия на окружающую среду. Б.э. - существенная часть национальной безопасности. Субъекты Б.э.: индивидум, общество, государство, биосфера. См. Допустимое состояние, Критическое состояние, Деградация ландшафта, Норма экологическая.
БЕЗОТВАЛЬНАЯ ОБРАБОТКА ПОЧВЫ (Б.о.п.) - рыхление почвы без изменения расположения ее слоев-горизонтов. Это экологичный и древний способ обработки почвы, возраст которого равен возрасту земледелия. При Б.о.п. лучше сохраняется влага и создаются благоприятные условия для сохранения гумуса.
Со временем простые орудия Б.о.п. -доисторическую палку-копалку, кетмень, лопату, рыхлитель на конной тяге - сменила соха. Ее главная часть - сошник-лемех, узкий и на конце обычно раздвоенный. Все части сохи скрепляли, связывая, что придавало конструкции эластичность и страховало от поломок при попадании на камни, пни или крупные корни. Это замечательное изобретение, появившись 5-6 тыс. лет назад, сохранялось на территории России вплоть до начала ХХ столетия.
Однако с появление металлического плуга, а затем и трактора Б.о.п. была вытеснена менее экологичной отвальной обработкой почвы, что породило многолетнюю дискуссию, завершившуюся победой сторонников Б.о.п.
Первым в 1889 г. в защиту Б.о.п. и против плуга последовательно выступил выдающийся русский агроном И. Е. Овсинский. Он писал о колоссальном вреде, который наносят плуги человечеству (в своих сравнениях он доходил до того, что считал вред от фабрики, производящей плуги, даже большим, чем от концерна Круппа, выпускающего снаряды). Вред плуга Овсинский видел в нарушении естественного расположения слоев почвы, снижении их водопроницаемости и ухудшении условий для деятельности микроорганизмов почвы: аэробы, которым требуется насыщение почвы кислородом, оказываются в глубине почвы и угнетаются анаэробными условиями, а анаэробные микроорганизмы, напротив, попадают в условия избытка кислорода.
Однако страстные призывы Овсинского не были услышаны, и вплоть до 60-х гг. в СССР преобладала плужная обработка почвы, что во многом было связано с непререкаемым авторитетом В. Р. Вильямса, который был ее сторонником.
Большую роль в этом возврате к Б.о.п. сыграл американец Э.Фолкнер, который в 1943 г. опубликовал книгу "Безумие пахаря" (в переводе на русский язык она вышла в 1959 г.). Книга была ответом на грандиозные пыльные бури 30-х гг., которые унесли миллионы тонн мелкозема с почв США и Канады и резко снизили их плодородие. Автор называл плуг "злодеем в мировой сельскохозяйственной практике", который вызывает эрозию и препятствует поступлению воды из более глубоких горизонтов почвы в приповерхностные, где расположена основная масса корней культурных растений. Как и Овсинский, Фолкнер при этом указывал на абсурдность переворачивания почвы и в качестве примера совершенства природы приводил естественные растительные сообщества, которые не страдают от засухи даже в самые засушливые годы.
Для распространения Б.о.п. в СССР много сделал выдающийся земледелец Т. С. Мальцев, который начал свои эксперименты в Курганской области в предвоенные годы, но смог утвердить новые представления только в период освоения целинных и залежных земель. В это время в СССР повторилась история разрушения почв США и Канады, и эрозия охватила миллионы гектаров почв Казахстана и Алтая. Система Б.о.п. Мальцева включала периодическое глубокое (до 40 см) рыхление почвы и регулярное рыхление на глубину 7-8 см, что активизирует биологическую жизнь почвы.
Б.о.п. тем выгоднее, чем меньше влаги в почве. Она особенно эффективна в степной зоне, где используется также нулевая обработка - посев зерна непосредственно в стерню. Однако Б.о.п. имеет свои недостатки, так как требует особо высокой культуры земледелия и строгого соблюдения сроков агротехнических работ в зависимости от особенностей климата, чтобы "обыграть" сорняки. Часто для контроля засоренности посева при Б.о.п. применяют почвенные гербициды.
БЕЗОТХОДНАЯ ТЕХНОЛОГИЯ (Б.т.) - наиболее экологичный вариант производства, при котором отходы одного цеха или предприятия являются сырьем для работы другого. Б.т. обеспечивают ресурсосбережение, что необходимо для построения общества устойчивого развития (см. Модели мира). Наиболее просто Б.т. достигается при переработке сельскохозяйственных продуктов, наиболее сложно - в некоторых отраслях химической промышленности, где при уменьшении количества отходов они становятся все более токсичными и требуют специальных условий захоронения. Как правило, безотходные и малоотходные технологии более энергоемки.
БЕНЗ(А)ПИРЕН (Б.) - соединение из группы полициклических ароматических углеводородов, широко распространенное канцерогенное вещество, присутствующее в газообразных отходах промышленности, выхлопах автомобилей, в табачном дыме, в продуктах сгорания пищи и др. До 40% выбросов Б. приходится на черную металлургию, 26% - бытовое отопление, 16% - химическую промышленность. Наиболее высокие концентрации Б. с превышением ПДК в 10-15 раз отмечены в городах с заводами по производству алюминия (Братск, Красноярск, Новокузнецк и др.). В 6-10 раз ПДК по Б. превышена в городах с предприятиями черной металлургии (Нижний Тагил, Магнитогорск, Челябинск) и в 3-5 раз - в городах с крупными предприятиями нефтехимии и нефтепереработки (Уфа, Пермь, Самара).
БЕНТОС (Б.) - совокупность организмов, обитающих на дне водоемов. В его состав входят организмы разных трофических групп:
*продуценты (водоросли - микроскопические и крупные, цветковые растения и хвощи);
*детритофаги, поедающие остатки отмерших животных и растений, а также тех организмов, которые падают на дно в виде "питательного дождя";
*хищники, поедающие более мелких животных Б.;
*редуценты, участвующие в разложении детрита до минеральных веществ.
Для пресноводного Б. обычны диатомовые водоросли, личинки поденок, ручейников, хирономид, малощетинковые черви, перловицы и другие виды двустворчатых моллюсков, ракообразные. Б. участвует в формировании отложений органического вещества на дне водоемов - сапропеля. Значительны различия состава Б. на разных грунтах.
Б. морей более разнообразен, так как зависит также и от глубины. В прибрежной зоне морей в состав Б. входят сидячие организмы (водоросли, кораллы, губки, мшанки, асцидии), роющие (кольчатые черви, моллюски), ползающие (ракообразные, иглокожие) и свободно плавающие у самого дна (камбалообразные, скаты, брюхоногие моллюски). На скальном субстрате много водорослей и растительноядных животных, а внутри твердого субстрата обитают организмы-сверлильщики (в основном двустворчатые моллюски). Отличается состав Б. на песчаном и илистом грунтах. В бухтах на илистых субстратах произрастает морская трава зостера, достигающая в длину нескольких метров. Глубоководный Б. представлен только гетеротрофами (см. Гетеротрофная экосистема).
Суммарная биомасса Б. океана оценивается в 10 млрд. т, причем 90% ее приходится на долю континентального шельфа.
БИОГАЗ (Б.) - смесь газов, в которой преобладают метан (55-65%) и диоксид углерода (35-45%). Б. образуется в процессе анаэробного разложения навоза, соломы и других органических отходов. Как источник энергии Б. получается в специальных установках (метантенках), в которых сбраживается биомасса остатков продуктов растениеводства, животноводства, навоз, фекалии и т. д. Сельское хозяйство Индии на 20% обеспечивает себя энергией за счет небольших установок по получению Б., в Китае таких установок уже свыше 60 млн. Тонна навоза или другой биомассы, подвергаемой сбраживанию, дает 500 м3 Б., что эквивалентно 350 л бензина.
Органическая масса, оставшаяся после производства Б., является ценным удобрением, причем производство Б. возможно и из жидкого навоза животноводческих комплексов. Получение Б. экологически целесообразно и выгодно, так как позволяет снизить расходы на горючее или электроэнергию для работы фермы и дает возможность эффективно переработать бесподстилочный навоз, превратив его в органическое удобрение. Получение Б. - биологический вариант гелиоэнергетики.
В РФ разработаны установки для получения Б. на небольших (до 30 голов крупного рогатого скота) фермах - уже работает 20 установок, а также индивидуальные биогазовые установки на 50-200 кг органических отходов в день, позволяющие получать 2,5-12 м3 Б.
БИОГЕННЫЕ ПОРОДЫ - горные породы, состоящие в основном из остатков вымерших животных (зоогенные горные породы), растений (фитогенные горные породы) и продуктов их жизнедеятельности. См. также Биолиты.

БИОГЕННЫЕ ПРОЦЕССЫ [от гр. bios - жизнь и genos - род, происхождение] - процессы, порождаемые живым веществом, связанные с ним (напр., биогенный круговорот).

БИОГЕННЫЕ ЭЛЕМЕНТЫ (биогены) - химические элементы, непременно входящие в состав живых организмов. Ср. Биофилы.

БИОГЕННЫЙ КРУГОВОРОТ - см. Биологический круговорот веществ.

БИОГЕОГРАФИЧЕСКАЯ ОБЛАСТЬ - крупное по площади флористически-фаунистическое подразделение земного шара, выделяемого гл. обр. по общности историко-эволюционного развития фауны и флоры. Как правило, внутри обл. флора и фауна характеризуются высокой степенью однородности. При переходе же от одной обл. к др. наблюдается резкий сдвиг в таксономическом составе на уровне родов и семейств.

БИОГЕОГРАФИЧЕСКИЙ БАРЬЕР - любое препятствие (географического и биологического характера) на пути распространения вида или сообщества популяций животных и растений. Напр., изотерма 100C лимитирует распространение к северу термита Reticulitermes lucifugus.

БИОГЕОГРАФИЯ [от гр. bios - жизнь и география] - научная дисциплина, изучающая закономерности распределения растительного покрова и животного населения в биосфере.

БИОГЕОХИМИЧЕСКИЕ АНОМАЛИИ - массовые нарушения развития, роста и функционирования живых организмов, наблюдаемые на определенной территории (биогеохимической провинции) и вызванные недостаточным или избыточным содержанием в среде (биотопе) определенных элементов.

БИОГЕОХИМИЧЕСКИЙ БАРЬЕР, или ландшафтно-геохимический барьер - зона резко повышенных концентраций тех или иных химических элементов по сравнению со средним содержанием их в данном ландшафте (ландшафтным кларком). Б.б. возникает, как правило, в зоне контакта между элементарными ландшафтами (фациями, биогеоценозами), отличающимися по физическим (напр., фильтрационным), химическим (различие окислительно-восстановительных, кислотно-щелочных условий) или биологическим (активная деятельность определенных групп микроорганизмов) свойствам. Ср.: Геохимический барьер.

БИОГЕОХИМИЧЕСКИЙ КРУГОВОРОТ химических элементов - циклические процессы перемещения и трансформации химических элементов в пределах биосферы, происходящие между ее (био)хорологическими подразделениями: биогеоценозами, ландшафтами и т.п. Ср. Биологический круговорот веществ и Геологический круговорот веществ. См. Круговорот веществ.

БИОГЕОЦЕНОЗ (1) [от гр. bios - жизнь, ge - земля и koinos - общий] - "совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, растительности, животного мира и мира микроорганизмов, почвы и гидрологических условий), имеющая свою особую специфику взаимодействий этих слагающих ее компонентов и определенные типы обмена веществом и энергией их между собой и с другими явлениями природы и представляющая собой внутренне противоречивое диалектическое единство, находящееся в постоянном движении, развитии" [84]. Б. - основной объект исследования биогеоценологии. Б. - элементарная биохорологическая структурная единица витасферы и в этом смысле синонимичен понятиям фация и элементарный ландшафт, хотя в отличие от последних обязательно включает живое вещество. Понятие Б. близко к понятию экосистема, но последняя лишена строгой биохорологической основы.
БИОГЕОЦЕНОЗ (2) - наземная экосистема в границах фитоценоза, т. е. однородного на первый взгляд участка растительности.
БИОГЕОЦЕНОЛОГИЯ [от гр. bios - жизнь, ge - земля, koinos - общий и logos - слово, учение] - научная дисциплина, исследующая строение и функционирование биогеоценозов, отрасль знания на стыке биологии (экологии) и географии.

БИОГОРИЗОНТЫ - функциональные подразделения слоев в биоценозах (напр., горизонт листового полога в березовом лесу, горизонты почв). Термин введен Ю.П. Бялловичем (1960).

БИОДИАГНОСТИКА [от гр. bios - жизнь и diagnosticos - способный распознавать] - выявление причин или факторов изменения состояния среды на основе видов биоиндикаторов с узко специфичными реакциями и отношениями. Включает биоиндикацию и биотестирование.
БИОИНДИКАТОРЫ [от гр. bios - жизнь и лат. indico - указываю, определяю] - организмы, присутствие, количество или особенности развития которых служат показателями естественных процессов, условий или антропогенных изменений среды. В качестве Б. могут быть использованы также сообщества организмов (биоценозы).
БИОИНДИКАЦИЯ - оценка качества среды обитания и ее отдельных характеристик по состоянию ее биоты в природных условиях. См. Биоиндикаторы. Ср. Биотестирование.
БИОКОСНОЕ ТЕЛО [от гр. bios - жизнь и косный] - тело, создаваемое одновременно живыми организмами и косными процессами и являющее собой закономерную структуру из живого и косного вещества. Примеры Б.т. по В.И. Вернадскому [10]: почва, морская, речная, озерная вода, нефть, битумы.

БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ ПОЧВ - совокупность биологических процессов в почве. О Б.а.п. судят по интенсивности дыхания почвы (потребление кислорода, выделение углекислоты), ферментативной активности почвы и др. показателям. Повышению Б.а.п. способствует внесение органических и бактериальных удобрений, использование сидератов и правильных севооборотов, а также применение мелиорантов (извести, гипса) для поддержания благоприятных физико-химических свойств почвы и мероприятий, улучшающих водный, окислительно-восстановительный и тепловой режимы. См. также Биомасса почвенных микроорганизмов активная.
БИОЛОГИЧЕСКАЯ АЗОТФИКСАЦИЯ (Б.а.) - усвоение некоторыми микроорганизмами молекулярного азота атмосферы и перевод его в органические соединения. Б.а. - важнейший этап круговорота азота в биосфере; основной процесс, который обеспечивает азотом естественные экосистемы; наиболее экологичный вариант обеспечения азотом агроэкосистем. Способностью Б.а. обладают некоторые бактерии, цианобактерии и актиномицеты.
Различают два основных типа Б.а.: симбиотическую и ассоциативную (см. Мутуализм). В первом случае азотфиксаторы симбиотически связаны с растениями отношениями типа мутуализма. Они образуют клубеньки на корнях растений (бактерии у бобовых, актиномицеты у ольхи) или живут на листьях растений (цианобактерии в листьях водного папоротника азолла). Во втором случае азотфиксаторы живут в почве вокруг корня (в ризосфере) и используют корневые выделения органических веществ. Есть некоторое количество бактерий-азотфиксаторов, которые свободно живут в почве, но их вклад в обеспечение растений азотом незначителен.
В естественных экосистемах преобладает ассоциативная А., которая достигает 200 кг/га азота в год, что обеспечивает круговорот азота и полностью компенсирует его потери в связи с процессами денитрификации. В агроэкосистемах роль ассоциативной Б.а. резко снижается и не превышает 40 кг/га азота в год. По этой причине для активизации Б.а. возделывают бобовые растения. В средней полосе России поле клевера или люцерны способно накопить за вегетационный сезон 200-400 кг/га азота, что полностью покрывает потребности в нем даже при интенсивном растениеводстве. В южных районах люцерна при поливе может накапливать до 700 кг/га азота в год, однако рекордсменом Б.а. является азолла, которая фиксирует за вегетационный сезон до 1000 кг/га азота.
БИОЛОГИЧЕСКАЯ ПРОДУКЦИЯ (Б.п.) - способность организмов производить органическое вещество в процессе своей жизнедеятельности. Б.п. измеряется количеством органического вещества, создаваемого за единицу времени на единицу площади (т/га/год, г/м2/день и т. д.).
Различают первичную (создаваемую растениями и другими автотрофами) и вторичную (создаваемую гетеротрофами) Б.п. В составе первичной Б.п. различается валовая (т. е. общая Б.п. фотосинтеза) и чистая Б.п. - "прибыль", которая остается в растениях после затрат на дыхание. Чем благоприятнее условия среды, тем выше "прибыль". В неблагоприятных условиях жаркой или арктической пустыни растения затрачивают на дыхание до 80% Б.п. фотосинтеза, а в благоприятных условиях при обильных ресурсах тепла и влаги - не более 30%.
При переходе энергии с одного трофического уровня на другой (от растений к фитофагам, от фитофагов к зоофагам, от хищников первого порядка к хищникам второго порядка) с затратами на дыхание и экскрементами теряется примерно 90% энергии. Кроме того, фитофаги съедают только 30% биомассы растений, остальная часть пополняет запас детрита, который затем разрушается редуцентами. Поэтому вторичная Б.п. в 20-50 раз меньше, чем первичная.
По первичной Б.п. экосистемы разделяются на четыре класса.
1. Экосистемы очень высокой Б.п. - свыше 2 кг/м2 в год. К ним относятся высокие и густые заросли тростника в дельтах Волги, Дона и Урала. По Б.п. они близки к экосистемам тропических влажных лесов и коралловых рифов.
2. Экосистемы высокой Б.п. - 1-2 кг/м2 в год. Это липово-дубовые леса, прибрежные заросли рогоза или тростника на озере, посевы кукурузы и многолетних трав, выращенные с использованием орошения и высоких доз минеральных удобрений.
3. Экосистемы умеренной Б.п. - 0,25-1 кг/м2 в год. Это преобладающая часть сельскохозяйственных посевов, сосновые и березовые леса, сенокосные луга и степи, заросшие водными растениями озера, "морские луга" из водорослей.
4. Экосистемы низкой Б.п. - менее 0,25 кг/м2 в год. Это пустыни жаркого климата, арктические пустыни островов Северного Ледовитого океана, тундры, полупустыни Прикаспия, вытоптанные скотом степные пастбища с низким и редким травостоем, горные степи, которые развиваются на почвах мощностью не более 5 см и состоят из растений-камнелюбов, покрывающих поверхность субстрата на 20-40%. Такую же низкую Б.п. имеет большинство морских экосистем.
Средняя Б.п. экосистем Земли не превышает 0,3 кг/м2 в год, так как на планете преобладают низкопродуктивные экосистемы пустынь и океанов.
На рис. 5 и 6 показана средняя первичная биологическая продукция на суше и в океане.
От Б.п. отличают урожай (количество органического вещества, которое имеет хозяйственную ценность) и биомассу. Например, в урожай луга не входит накопленная за год биомасса корней и надземная биомасса, которая расположена ниже линии скашивания или скусывания травы пасущимися животными.
БИОЛОГИЧЕСКИЕ ИНДИКАТОРЫ (Б.и.) - организмы, которые реагируют на изменения окружающей среды своим присутствием или отсутствием, изменением внешнего вида, химического состава, поведения.
При экологическом мониторинге загрязнений использование Б.и. часто дает более ценную информацию, чем прямая оценка загрязнения приборами, так как Б.и. реагируют сразу на весь комплекс загрязнений. Кроме того, обладая "памятью", Б.и. своими реакциями отражают загрязнения за длительный период. На листьях деревьев при загрязнении атмосферы появляются некрозы (отмирающие участки). По присутствию некоторых устойчивых к загрязнению видов и отсутствию неустойчивых видов (например, лишайников) определяется уровень загрязнения атмосферы городов.
При использовании Б.и. важную роль играет способность некоторых видов аккумулировать загрязняющие вещества. Последствия аварии на Чернобыльской АЭС были зафиксированы в Швеции при анализе лишайников. Сигнализировать о повышенном содержании бария и стронция в окружающей среде могут береза и осина неестественно зеленым цветом листьев. Аналогично в ареале рассеяния урана вокруг месторождений лепестки иван-чая становятся белыми (в норме - розовые), у голубики темно-синие плоды приобретают белый цвет и т. д.
Для выявления разных загрязняющих веществ используются разные виды Б.и.: для общего загрязнения - лишайники и мхи, для загрязнения тяжелыми металлами - слива и фасоль, диоксидом серы - ель и люцерна, аммиаком - подсолнечник, сероводородом - шпинат и горох, полициклическими ароматическими углеводородами (ПАУ) - недотрога и др.
Используются и так называемые "живые приборы" - растения-индикаторы, высаженные на грядках, помещенные в вегетационные сосуды или в специальных коробочках (в последнем случае используют мхи, коробочки с которыми называются бриометрами). "Живые приборы" устанавливают в наиболее загрязненных частях города.
При оценке загрязнения водных экосистем в качестве Б.и. могут использоваться высшие растения или микроскопические водоросли, организмы зоопланктона (инфузории-туфельки) и зообентоса (моллюски и др.). В средней полосе России в водоемах при загрязнении воды разрастаются роголистник, рдест плавающий, ряски, а в чистой воде - водокрас лягушачий и сальвиния.
С помощью Б.и. можно оценивать засоление почвы, интенсивность выпаса, изменение режима увлажнения и т. д. В этом случае как Б.и. чаще всего используется весь состав фитоценоза. Каждый вид растений имеет определенные пределы распространения (толерантности) по каждому фактору среды, и потому сам факт их совместного произрастания позволяет достаточно полно оценивать экологические факторы.
Возможности оценки среды по растительности изучаются специальным разделом ботаники - индикационной геоботаникой. Ее основной метод - использование экологических шкал, т. е. специальных таблиц, в которых для каждого вида указаны пределы его распространения по факторам увлажнения, богатства почвы, засоления, выпаса и т. д. В России экологические шкалы были составлены Л. Г. Раменским.
Широкое распространение получило использование деревьев как Б.и. изменения климата и уровня загрязнения окружающей среды. Учитывается толщина годичных колец: в годы, когда выпадало мало осадков или в атмосфере повышалась концентрация загрязняющих веществ, образовывались узкие кольца. Таким образом, на спиле ствола можно видеть отражение динамики экологических условий.
БИОЛОГИЧЕСКИЕ МЕТОДЫ ЗАЩИТЫ РАСТЕНИЙ (биометоды, Б.м.) - использование организмов и продуктов их жизнедеятельности (или их синтетических аналогов) для контроля плотности популяций насекомых-вредителей, сорных растений и грибов, вызывающих болезни сельскохозяйственных растений.
Одним из первых в начале 80-х гг. прошлого столетия предложил использовать Б.м. для контроля насекомых И. И. Мечников (споры плесневого гриба против хлебного жука). Однако первый промышленный препарат на основе тюрингской бациллы был получен во Франции. Сегодня на основе этой бациллы производится не менее 20 препаратов. Примерно в это же время Б.м. был успешно применен в Калифорнии. В 1872 г. в этот район США был случайно занесен австралийский желобчатый червец, который стал страшным вредителем цитрусовых культур. В 1889 г. для борьбы с ним из Австралии был завезен его естественный враг - хищник мелкая божья коровка родолия. В течение нескольких месяцев зараженность деревьев червецом резко снизилась. Этот прием был успешно повторен еще в 50 странах, где цитрусовые страдали от червеца.
Для контроля популяций сорных растений применяют микогебиициды - споры патогенных грибов, направленно поражающих определенные виды. Для контроля популяций насекомых-вредителей используют энтомофагов, размножаемых в лабораториях (например, насекомых трихограмму, криптолемус), и эндобактерии, вызывающие болезни насекомых-вредителей.
Для привлечения и дезориентации самцов используют сигнальные вещества - аттрактанты и репелленты; эффективным оказывается также наводнение популяции стерилизованными самцами.
В настоящее время раскрыт химический состав сигнальных веществ, которые выделяются из корней растений-хозяев и вызывают прорастание семян паразитов - стриги и заразихи. После опрыскивания почвы ничтожно малым количеством препарата семена паразитов прорастают и, не найдя хозяина, быстро погибают. В РФ с заразихой борются с помощью грибка фузариума и мушки фитомизы.
Особенностью Б.м. является направленное действие каждого препарата или биологического агента, который поражает определенный вид сорных растений или определенный вид насекомых, хотя в последние годы используются энтомофаги, способные контролировать плотность популяций нескольких видов насекомых-вредителей. Возможно сочетание Б.м. и умеренного использования пестицидов в сроки, когда они наименее опасны для энтомофагов (см. Интегрированный метод защиты растений).
Как Б.м. рассматривается также подавление сорных растений культурами с высокой конкурентной способностью (многолетние травы, рожь), использование поликультур и сортосмесей, в которых уменьшается количество свободных экологических ниш для поселения сорных растений.
Роль Б.м. в сельском хозяйстве быстро возрастает. Так, в США Б.м. используется на 8% посевной площади, в Китае за счет Б.м. использование пестицидов при возделывании хлопка снизилось на 90%. Повышается роль Б.м. и в сельском хозяйстве нашей страны. Он постепенно становится основным методом санитарного воздействия на лесные экосистемы. Так, удалось выделить форму тюрингской бациллы, вызывающую болезни сибирского шелкопряда - одного из главных вредителей наших лесов.
Наиболее эффективная форма Б.м. - система полезных симбиотических связей.
К Б.м. относится и контроль натурализовавшихся и заносных видов, которые в новых условиях бурно размножаются. Так, в Австралии для ограничения размножения опунции была использована бабочка кактусовая огневка, а для борьбы с сальвинией назойливой - долгоносик. Возможно использование Б.м. для контроля паразитов животных и других нежелательных организмов. Так, в 20-х гг. расселение в водоемах Италии и Испании американской рыбки гамбузии положило конец эпидемиям малярии: личинки малярийных комаров были уничтожены рыбкой. После этого гамбузия была расселена на Ближнем Востоке, Гавайских островах и в Аргентине.
БИОЛОГИЧЕСКИЕ РЕСУРСЫ (Б.р.) - живые источники получения необходимых человеку материальных благ (пищи, сырья для промышленности, материала для селекции культурных растений, сельскохозяйственных животных и микроорганизмов, для рекреационного использования). Б.р. - важнейшая составляющая среды обитания человека, это - растения, животные, грибы, водоросли, бактерии, а также их совокупности - сообщества и экосистемы (леса, луга, водные экосистемы, болота и др.). К Б.р. относятся также организмы, которые окультурены человеком: культурные растения, домашние животные, использующиеся в промышленности и сельском хозяйстве штаммы бактерий и грибов.
За счет способности организмов размножаться все Б.р. являются возобновимыми, однако человек должен поддерживать условия, при которых возобновимость Б.р. будет осуществляться. При современной системе использования Б.р. значительной их части угрожает уничтожение.
БИОЛОГИЧЕСКИЙ ПОТЕНЦИАЛ АГРОЭКОСИСТЕМЫ (Б.п.а.) - верхний предел биологической продукции (и, соответственно, продукции растениеводства и животноводства), который может быть достигнут при полном раскрытии естественного потенциала почв и естественных кормовых угодий за счет экологически оправданных вложений антропогенной энергии. Б.п.а. зависит от климата и почв и подчиняется закону лимитирующих факторов.
Раскрытие Б.п.а. - центральная задача агроэкологии (см. Адаптивный подход).
БИОЛОГИЧЕСКОЕ ЗАГРЯЗНЕНИЕ (Б.з.) - привнесение в окружающую среду (воду, атмосферу, почву, а также продукты питания) и размножение в ней микроорганизмов, вызывающих болезни человека или сельскохозяйственных животных. Б.з. происходит, если в среду попадают необеззараженные сельскохозяйственные или бытовые стоки, содержащие органические вещества. Б.з. может быть причиной опасных эпидемий. Так, в Дагестане в 1994 г. массовые заболевания холерой были вызваны загрязнением воды неочищенными бытовыми стоками, содержащими возбудитель холеры.
Источником Б.з. могут стать трупы сельскохозяйственных животных, и потому их либо захоранивают в глубоких скотомогильниках, либо перерабатывают на специальных предприятиях. Там при высокой температуре болезнетворные микроорганизмы погибают, а из животной массы получают жир для производства мыла, сырье для кожевенной промышленности, кормовые добавки.
БИОЛОГИЧЕСКОЕ РАЗНООБРАЗИЕ (Б.р.) - разнообразие видов в конкретной экосистеме, на определенной территории или на всей планете. В настоящее время науке известно около 2,5 млн. видов, причем 74% видов связано с тропическим поясом, 24% - с умеренными широтами и 2% - с полярными районами.
Считается, что этот список очень неполон, так как не выявлены многие мелкие животные (в частности, насекомые и паукообразные), грибы, бактерии (особенно в тропиках, где Б.р. самое высокое). Ученые предполагают, что общее число видов на планете составляет от 5 до 30 млн.
Б.р. разных групп организмов существенно различается. Самая богатая видами группа организмов - насекомые. Их насчитывается почти 1,5 млн. видов.
Б.р. обычно оценивается по отдельным группам организмов: указывается количество видов сосудистых растений (цветковых, голосеменных, папоротников, плаунов, хвощей), мхов, лишайников, крупных грибов, видимых глазом (их называют макромицетами), микроскопических грибов (микромицетов), водорослей, насекомых, почвенных животных (также видимых глазом, их называют мезофауной), птиц, млекопитающих, бактерий и т. д. Аналогично по группам оценивается Б.р. водных экосистем (группы планктона и бентоса - фитопланктон, зоопланктон, фитобентос, зообентос, нектон, растения-макрофиты). Совокупность видов растений называется флорой, а видов животных - фауной.
Между Б.р. разных трофических уровней отмечена зависимость "разнообразие порождает разнообразие": чем больше видов-автотрофов, тем больше видов-гетеротрофов (консументов и редуцентов).
Между Б.р., устойчивостью экосистем и их биологической продукцией нет прямой связи. Более продуктивными могут быть экосистемы с невысоким Б.р. Например, при удобрении лугов их Б.р. резко снижается, а продукция - увеличивается. Устойчивыми (т. е. способными самовосстанавливаться после нарушения) часто являются экосистемы с невысоким Б.р., например, пустыни.
Б.р. отдельных биоценозов определяется взаимодействием многих факторов, главные из которых следующие.
1. Благоприятность условий среды. В экосистемах с богатыми и хорошо увлажненными почвами и в теплом климате может быть больше видов, чем в экосистемах с бедными, холодными и очень сухими почвами. Впрочем, в тундрах снижение Б.р. сосудистых растений компенсируется возрастанием Б.р. мхов и лишайников, которые имеют очень мелкие размеры.
2. Общий "запас" видов ландшафта. Если ландшафт в прошлом был подвержен сильным нарушениям, которые обеднили его флору и фауну, то даже при благоприятных условиях и по прошествии после нарушения долгого времени биоценозы будут иметь весьма низкое Б.р.

<< Пред. стр.

страница 2
(всего 5)

ОГЛАВЛЕНИЕ

След. стр. >>

Copyright © Design by: Sunlight webdesign