<< Пред. стр.

страница 26
(всего 28)


След. стр. >>

conduit through the auger and impeller-blower.
The effectiveness of foregoing two designs is justified both by the high-speed cinema-
tography with frequency of 1500-3000 frame per second as shown in Fig. 2 and by the field
trials, particularly as harvesting in earlier stage.

Fig. 2 The moving grains in space between teeth are intercepted by fixed teeth and rebound
up. Their trajectories are recorded by high speed cinematography

? The floating cutter-bar shown in Fig l, sliding on ground contouring terrain longitu-
dinally and lateral1y is set closely behind the stripping rotor so that as the top part of the plant
just leaves the stripping rotor the straw comes to be cut. The knife assembly is driven by ver-
tical crankshaft (32) on which is fixed the revolving rod (35) for raking the cut straw at front
of the crawler to the center of machine forming a windrow between crawlers. The revolving
rod in front of the other side crawler rotates counter wise to the previous one. The suspension
spring (38) facilitates the floatation of cutter-bar. The cut straw on the central portion of the
swath moves over the cutter-bar by means of its inertia and the stiffness of the foregoing un-
cut straw.
In case of harvesting the wet crop at the earlier stage, the inertia and stiffness is inade-
quate to push straw over the cutter-bar, then an eccentric raking mechanism developed by au-
thor as shown in Fig.3, is insta1led on the centra1 portion of the swath as an optional device.
That organ ensures the dependability of straw windrowing.

ISBN 5-88890-034-6. Том 1.

Fig.3 The floating cutter bar and windrowing mechanism with an eccentric mecha-
nism for the wet crops

? A vertical positioned, cylindrical sieve cleaning system was developed specialized
for stripping harvesting ,which is characterized by much less MOG in threshed materials. Its
construction and technology as follows: The rethreshed materials through the horizontal auger
enter the vertical one (17). The unthoroughly threshed ears undergo a further threshing in the
clearance between the auger flight and its case (18) in the course of elevation. The upper half
of the case is a perforated cylindrical sieve (28). By virtue of the centrifugal force the grain
and the debris along pass through the sieve ho1e effectively and then drop down through the
annular channel confined by the cylindrical sieve and intermediate cylinder (29) onto the ring
distributor ,the blades(24)of which throw the mass horizontally ,forming a very thin layer and
strike against the conic reflector(25)at the bottom end of the outer cylinder (30). The upward
air flow in outer annular channel (30) produced by the fan (36) penetrates that thin layer of
mass, bringing debris through the fan (36) to atmosphere. The reflector imparts the grain a
higher rebounding vertical down ward speed, providing good potential to increase the upward
speed of air flow for raising the cleaning efficiency .The grain and unthreshed ear, if there is,
among the chaff at the upper end of the vertical auger are discharged by the blade (11) into the
exit (10) and through the cross tube into the depositing chamber for recycling in the system
.The grain deposits in container (20) and is discharged by blade (2l) attached on lower half of
the sheave (22) running on 3 ball bearings (23). The grain flows through the outlet of con-
tainer into the sack. On upper half of the sheave are fixed the blades (24), which constitute a
ring distributor.

As the rice being harvested, its moisture content, grain’s readiness to be shelled or
broken , consequently, and machine’s harvesting performance are all disparate between before
and after hoar frost occurrences therefore the field trials were arranged on foregoing two peri-
ods respectively. Its results are shown in Table l, for harvesting wheat in Table 2. The data of
Shelbone SH model “RX-24” tested in the identical province and with similar conditions are
offered by its dealer in china and cited aside for reference.
In the course of 4-year fie1d testing in production conditions the prototype of full size
harvested 40 hm2 of rice and less amount of wheat.

ISBN 5-88890-033-8. Экология и сельскохозяйственная техника. СПб, 2005.

Table 1
Field Trial Results* of Stripper Combine Harvester“4ZTL-1800” in harvesting Rice

After hoar
Period of trial Before hoar frost
Sept. 23, Sept. 26, Sept. 26,
Date Oct. 5, 1995
1996 1996 1998
Height of panicles from
67.9 78 74 77
ground (cm)
Range of panicle height 26.2 34 42 31.8
variation (cm)
Moisture content of Grain, 15.7; 52.2 26.5; 70.2 25.4; 66.6 22.2; 67.5
MOG (%)
(Kg /hm2)
Crop yield 8300 6688 7240 11466
Thousand grain weight
26.1 28.3 27.5 28.7
Ground speed of machine 1.17 1.28 0.70 1.33 0.73 1.43 1.18 1.39
Swath (m) 1.80 1.80 1.80 1.80
Stubble height (cm) 6.14 7.71 5.10 5.40 - 7.9 5.1
Total grain loss (%) 0.78 1.09 2.25 2.56 1.78 3.06 1.43 1.54
(Kg /hm2)
Free grain 23.5 34.2 19.8 19.1 50 49.5 48.3 34.1
(%) 0.28 0.41 0.30 0.29 0.69 0.68 0.42 0.30
Unthreshed grain (%) 0.08 0.20 0.07 0.16 0.36 0.35 0.41 0.51
Separation loss (%) 0.40 0.47 1.67 2.05 0.68 1.98 0.60 0.73
Shoe loss (%) 0.01 0 0.21 0.06 0.05 0.05 0 0
Hulled & broken grain
0.94 0.37 0.47 0.66 0.52 2.0**
Cleanliness of grain (%) 96.6 99.12 98.82 99.04 99.26 98.6 99.4
Theoretical output
0.76 0.83 0.45 0.86 0.48 0.93 0.76 0.90

*Field trial and measurement performed by the state-authorized Agricultural Machin-
ery Testing and
Evaluation Station affiliated to Heilongjiang General Bureau of Reclamation (Report
No. S95XJ-27, S96KJ-9, S98KJ-25).
**Higher percentage of hulled & broken grain is caused by “extraordinary smaller
clearance in the grain auger due to improper assemble work”.(see report S98KJ-25)

The data in Table l acquired from early harvesting on Sept. 26, l996 showed that as
ground speed of machine raised to l.33--1.43 m/s the separation loss reached an unacceptable
high—2.05—1.98%,due to the wet straw and leaves impeding grain being separated signifi-
cantly .

ISBN 5-88890-034-6. Том 1.

Table 2.
Field Trail Results of 4ZTL-1800 in Harvesting wheat

RX24 Schelbone-Haima strip-
Machine 4ZTL-1800*
Heilongjiang province Yi- Heilongjiang province Nen-jiang
Place lan county county
Date July 14 ,1998 Aug. 4, 1998
Height of panicles from
103 87˜90
ground (cm)
Range of panicle height
47.3 No report
variation (cm)
(Kg /hm2)
Crop yield 4197 4050˜4327
Moisture content (%) of
21.9; 44.5 21˜36 ; 25˜42
Grain, MOG
Thousand grain weight
36.6 No report
Ground speed of machine
0.83 1.3 1.55 0.78 1.85 1.76
Swath (m) 1.80 2.40
Stubble height (cm) 10.2 8.0 8.3 No report
Total grain loss (%) 1.86 1.83 1.67 2.56 2.85 3.32
Free grain (Kg /hm ) 54.4 52.0 50.5 86.7 93 113*
(%) 1.29 1.24 1.20 1.97 2.28 2.74
Unthreshed grain (%) 0.26 0.42 0.17 0 0 0
Separation loss (%) 0.07 0.04 0.03 —
Shoe loss (%) 0.24 0.13 0.27 0.59 0.57 0.58
Broken grain (%) 0 0.2 0.2 0.36 0.36 0.34
Cleanliness of grain (%) 98.7 98.5 98.7 99.41 99.41 99.0
Theoretical output 0.54 0.84 1.01 0.67 1.60 1.52
(hm /h)
*Field trial and measurement performed by the state-authorized “Agricultural Machin-
ery Testing and Evaluation Station” affiliated to Heilongjiang General Bureau of Reclama-
tion (Report No.S98KJ-19).
**Results provided by dealer of RX-24 in China.

A new small detachable axial-flow rethresher (37) was developed in this connection. It
is positioned in series with major rethresher (l4). Its auger type drum is of small diameter, of
higher peripheral speed and imparting the grain higher centrifugal force for enhancing the
separation . The separated materials through the concave are conducted to the horizontal au-
ger. The results is the separation loss reduced to 0.73% at ground speed of l .39 m/s. and while
the total grain loss reduced to l .54%. The machine’s performance shown in Tables has fol-
lowing features:
? Free grain loss as machine working in tables shown crop conditions is lower despite
working at higher or lower ground speed and at high yie1d rice up to l l,466 Kg/hm 2. This
should be attributed to the introduction of pneumatic conveying system, staggered positioned
fixed teeth, the raised bottom of conduit tangential to the drum of stripping rotor, and the re-
covery chamber.
? Machine reaches higher ground speed 1.39-1.43 m/s for rice (1.6 m/s in 2004) and
1.55 m/s for wheat.

ISBN 5-88890-033-8. Экология и сельскохозяйственная техника. СПб, 2005.

? Shoe loss (here refers to grain loss from two fans) is much less than that in the ordi-
nary flat sieve-blast cleaning system by virtue of the cylindrical sieve in which there isn’t any
grain loss slipped from sieve surface to the ground like the ordinary does.
? Floating cutter-bar with revolving rods and eccentric raking mechanism ensures
lower stubble cutting of inclined straw just leaving from the stripping rotor at higher ground
speed and higher straw moisture content.
? Center-delivered windrowing provides machine the freedom to select any suitable
route such as making a detour around the over wetted spot to prevent machine from bogging
down in comparison with side-delivered one .
? Detachable adjunct rethresher substantially reduces the separation loss in harvesting
wet ,high yield rice (table 1, Sept. 26,1998),thus it magnifies machine’s function in terms of
adapting it to wider range of crop conditions .In Northeast China and the like most of the rice
is harvested in dry crop condition the major rethresher is adequate to deal with, then the ad-
junct one may be detached .
? Field trials revealed vertical cylindrical sieve with the auger inside had some advan-
tages over the flat sieve:
# Higher capacity or flow rate per unit area of sieve surface than that of flat one owing
to subjecting the grain to a radial acceleration which is much greater than gravity one .
# Rotating auger inside the cylinder cleans the sieve surface and gets the rid of clog-
ging with trash.
# Machine saves the tailing’s auger and elevator thanks to the cylindrical sieve system,
which is capable to raise and feed tailings back to depositing chamber doing an endless recy-
cling till all the grain is sieved out.
# Cylindrical sieve’s inclination doesn’t harm its performance like the flat sieve does,
because the slope of terrain has no effect on the evenness of materials’ distribution on the
sieve surface.
# No vibration produced by reciprocating motion like the flat sieve possesses in con-
ventional combine.
# Materials move over the cylindrical sieve more uniformly than on the flat sieve do,
thus the distributor isn’t needed.
? Machine’s deficiencies are:
# Pneumatic conveying system causes energy-consuming and noise somewhat in-
# In harvesting heavily lodged and sparsely populated crops the free grain loss is
higher than desired.

Four-year field-testing in production conditions of the full size prototype showed the
objectives of study have been obtained .The machine harvested the rice before and after the
hoar frost occurrence in listed in table conditions in principle well .That is the free grain loss
is reduced owing to the air suction; cutting and windrowing the straw is accomplished imme-
diately after the stripping ;the machine is capable to work with comparatively higher ground
speed ;vertical cylindrical cleaning system justified itself with higher capacity, higher cleanli-
ness and simpler construction. The further improvements should be focused on the listed defi-

ISBN 5-88890-034-6. Том 1.

1. Klinner W E, A New stripper Header for Combine Harvesters, Agricultural Engi-
neer, Spring, 1987, 9 14.
2. Reporter, Stripper needs a home, Power Farming, Vol.72 No.6 Sept.1991.
3. Covliagin F W, et .al. Harvesting the grain crop by means of stripping, Mechani-
zation and electrification of Agriculture, 1991. No.8 (in Russian)
4. Hobson R.N, Performance of an experimental 2 m wide trailed stripper harvester,
Annual Report of Crop Division, AFRC Institute of Engineering Research, Silsoe, UK.

Jinag Yi-yuan, Zhang Hui-you, Xu Jia-mei, Tu Chen-hai, Luo Peizhen,
Jiang En-chen, Wang Jing-wu, Na Ming-jung, Han Bao



С момента появления очесывающего хедера, разработанного Научно-
исследовательским Советом по сельскому хозяйству и пищевой промышленности (Ве-
ликобритания) (Agricultural and Food Research Council (United Kingdom) в середине
1980 годов, было предпринято множество попыток, направленных, в основном, на его
адаптацию к аномальным условиям уборки или на разработку комбайна очесывающего
типа целевого назначения.
Устройства обмолота, сепарации и очистки обычного комбайна, на который на-
вешивается очесывающий хедер, обычно не могут обеспечить соответствующую про-
изводительность и качество работы. Поэтому прицепная уборочная машина на основе
очесывающего ротора была усовершенствована Хобсоном (1988) в направлении ком-
пактного размещения в машине устройства предварительной сепарации, обычного мо-
лотильного барабана и барабанного сепаратора. Результаты полевых испытаний под-
твердили маневренность машины, ее работоспособность и высокую эффективность
уборки пшеницы и ячменя, однако из-за отсутствия системы очистки, в зерне было от-
мечено большое содержание половы. В модифицированном очесывающем хедере, соз-
данным Сабановым (1985), перед очесывающим ротором размещался дополнительный
вал, вращающийся в обратном направлении, чтобы улучшить уборку полеглых куль-
тур; в то же время режущий аппарат для срезания соломы был установлен сразу же по-
зади очесывающего хедера. Но срезанная солома не собиралась в валки, а давилась ко-
лесами машины. Ниил (1991) предпринял попытку установить режущий аппарат с гид-
роприводом позади очесывающего хедера. Солома подавалась на два полотенных
транспортера и собиралась в один валок, с которым было удобно работать пресс-
подборщику. По свидетельству самого автора, работа этого устройства была неудовле-
творительной. Предварительное использование очесывающей технологии уборки в Ки-
тае показало, что в большинстве случаев солому следует убирать одновременно со сбо-
ром зерна, так как солому, которую давят колеса уборочной машины и перегрузчика
зерна в поле, невозможно убрать полностью, что приводит к задержке полевых работ
по последующей культуре в районах с выращиванием нескольких культур за сезон. Что
касается уборки соломы сразу же после очеса, некоторые более ранние попытки были
ISBN 5-88890-033-8. Экология и сельскохозяйственная техника. СПб, 2005.

предприняты в Китае путем простого присоединения серийно выпускаемой жатки с бо-
ковым сбросом (валковой жатки) прямо позади очесывающего хедера. Агрегат оказался
чрезвычайно длинным, что снижало маневренность машины, и, более того, поперечная
подача вертикально стоящей соломы часто вызывала забивание механизма, что затруд-
няло формирование валка и ограничивало скорость машины.
Задачами исследования, которое представлено в данной статье, было разрабо-
тать новый уборочный комбайн, в первую очередь, для уборки риса, во-вторых, для
пшеницы и семян бобовых трав, и суметь избежать вышеперечисленных недостатков.
В запатентованную конструкцию новой машины была введена пневматическая
транспортирующая система, так что шнек и промежуточные устройства в очесываю-
щем хедере (ленточный, роликовый или вибротранспортер) можно не устанавливать.
При этом освобождается пространство для размещения режущего аппарата и рядковой
жатки, а потери обмолоченного зерна снижаются за счет того, что оно отсасывается
воздушным потоком, создаваемым пневматической системой.
Плавающий режущий аппарат расположен позади очесывающего ротора так,
чтобы верхняя часть растения удалялась ротором, а нижняя часть стеблей подавалась
на скашивание. Нож приводится в движение при помощи вертикального кривошипно-
го вала, на котором закреплены два вращающихся штыря. Диаметр круговой траекто-
рии штыря как раз равен ширине гусеницы. Поэтому вращающийся штырь может лег-
ко подхватывать срезанные стебли солому и сбрасывать их в пространство между гусе-
ницами, что позволяет избежать раздавливания соломы.
Срезанная солома в центральной части валка движется за плавающим срезаю-
щим аппаратом по инерции или при помощи транспортирующего устройства скребко-
вого типа. Поэтому валок располагается в пространстве между двумя гусеницами.
Ввиду того, что содержание примесей в зерне после очеса значительно меньше,
чем после обмолота обычным комбайном, автор изобрел уникальное вертикально рас-
положенное цилиндрическое решето с системой вертикальной подачи воздуха для
подъема материала, очистки зерна, повторного обмолота и переработки обломанных
колосьев. Эта система отличается высокой производительностью на единицу площади
поверхности решета, простотой конструкции, отсутствием вибрации, вызванной воз-
вратно-поступательным движением, а также отсутствием чувствительности к уклону
Полевые испытания показали, что при нормальном состоянии культуры машина
развивает скорость 1,39 – 1,43 м/сек, при этом потери зерна составляют 34,1-44,5 кг/га
для риса и 1,55 м/сек и 50,5 кг/га для пшеницы, соответственно. Общие потери зерна
обычно составляют менее 2%. Высота стерни колеблется в диапазоне 5-8 см для пше-
ницы, но отдельные стебли могут быть до 20 см. К недостаткам машины можно отне-
сти: высокое энергопотребление; уровень шума выше, чем при работе обычного ком-
байна с навесным очесывающим хедером из-за пневматической системы транспортиро-
вания; осадочная камера для выделения зерна из воздушного потока выглядит
громоздкой, но не настолько тяжела, кроме того, имеется возможность существенно ее

Получено 25.05.2005.

ISBN 5-88890-034-6. Том 1.

Zuming LIU1, Jian XIE1, Chaofeng XIA1, Maohua WANG2, 1
. Solar Energy Research Institute, Chinese Education Ministry Renewable Energy Materials
& Advance Manufacture Technology Key Laboratory, Yunnan Provincial Renewable Energy
Engineering Key Laboratory, Yunnan Normal University, Kunming, Yunnan 650092, CHINA
China Agricultural University, BEIJING 100083, CHINA


Abstract: Chinese rural electrification, especially recent twenty years experience was
summarized. Un-electrified areas and population decreases greatly with many national pro-
grams. Present rural electrification situation and future development trend are also presented
in the paper. Renewable energy will play more and more important role in remote rural elec-

Key words: Chinese rural electrification, rural electrification program, renewable en-

Electricity is one of the most important symbol and energy for modern agriculture. Ru-
ral electrification is a necessary historical stage for rural social and economical development.
There was no electricity in rural areas in 1949 when new China was found. There were more
than 450 million peoples without electricity at the beginning of Chinese open policy adopted
in 1978. There were more than half rural areas in China depending on rural hydro power sup-
ply in 1980s. At that time electricity shortage was very serious in whole China especially in
rural areas. Rural electricity consumption was very low. Rural grids were low level and grid
losses were very high. Investment was very lacking and management were also low level. Af-
ter open policy was adopted rural electrification develops very quickly and the development
experiences can be a good reference for the world.

2.1 Chinese central government and local governments and rural people working
Chinese government paid much attention and carried out national rural electrification
programs continually. Rural electrification is one of the most important measures to solve ag-
riculture production and to promote rural economy and to improve rural people living. The
policy of “Adjusting measures to local conditions and multi-energy complement” has been
established and both electric power stations and grids have been solved properly for Chinese
rural electrification. There were 100, 200, 300 and 400 counties had been selected as rural
primary electrification counties in Chinese the seventh, eighth, ninth and tenth five year plans
from 1985 to 2005. In the “Hundred Counties Energy Construction Program” rural electrifica-
tion is also the most important content. Standards for rural primary electrification county are
as following:
(1) Household electrification rate should be more than 90%. Electricity supply should
meet the requirement of illumination, electric fan, electric mattress, TV and radio cassette etc.

<< Пред. стр.

страница 26
(всего 28)


След. стр. >>

Copyright © Design by: Sunlight webdesign