LINEBURG


<< Пред. стр.

страница 24
(всего 27)

ОГЛАВЛЕНИЕ

След. стр. >>

290
11
290
42
Многолетние надземные части растений
1060
47
40
2
Корни
1130
42
353
56
Всего
2480
100
683
100

Распределение масс химических элементов в биологическом круговороте представлено в табл. 14.5
Таблица 14 5
Распределение масс химических элементов в биологическом
круговороте в засушливой саванне Раджпутана


Химический элемент
В биомассе, кг/км2
В ежегодной продукции







зеленая часть

корни

вся продукция



кг/км2
%
кг/км2
%
кг/км2
%
N
17934
4286
59
2614
36
7208
100
Si
5381
2214
52
2021
48
4248
100
Са
25625
3422
57
1928
32
5978
100
К
11 121
3157
61
1868
36
5204
100
Mg
4869
680
51
540
41
1330
100
Р
1219
357
56
268
42
642
100
S
1760
886
72
318
26
1239
100
А1
1937
246
52
180
38
469
100
Fe
1137
164
53
121
39
311
100
Мn
284
101
48
107
51
209
100
Na
952
279
58
195
40
482
100
С1
1496
516
54
427
45
951
100
Всего (без N)
55781
12022
57
7973
38
21 063
100

В зеленой части растительности саванн сосредоточено более половины всей массы зольных элементов и азота, вовлекаемых в биологический круговорот, в корнях — около 40 %. В стволы и ветви поступает не более 5 %. В зеленых органах растений наиболее активно аккумулируются азот, калий и сера, составляющие около 60 % и более от всей массы каждого из этих элементов в годовой продукции, а также фосфор, кальций и натрий (57 — 58 %). В корнях отмечена наибольшая относительная аккумуляция марганца и кремния, массы которых распределяются примерно поровну в приросте зеленых органов и корней. В абсолютном выражении в наибольшем количестве в биологический круговорот вовлекаются кальций, калий, кремний, массы которых составляют 4 — 6 т/км2 в год. Массы металлов (железа и марганца), захватываемые в биологический круговорот, не превышают 200 — 300 кг/км2 в год.
Одной из особенностей тропиков являются ландшафты сезонных болот Избыток воды в дождливые сезоны, возникающий в депрессиях рельефа и обширных понижениях, затрудняет существование деревьев, но благоприятствует развитию высокотравных злаков. Ландшафты злаковников, состоящих в Африке из представителей родов Pennisetum, Hypparrhenia, Themeda, Sorghastmmnjip., получили название грэсслендов. В злаках этих сообществ активно накапливаются марганец, медь, цинк, стронций и молибден. Величина К5 первых четырех элементов составляет несколько единиц, молибдена — более 10.
Растения пресных вод слабо аккумулируют рассеянные элементы. В частности, в золе папируса, растущего по берегам Белого Нила, систематически обнаруживаются 100nЧ10-4 % титана и марганца, 10nЧ10-4 % цинка, бария, ниобия, nЧ10-4 % меди.

14.2. Биогеохимические особенности
тропических почв

Характерной чертой тропических экогеосистем является высокая интенсивность почвенно-биологических процессов. В дождевых лесах Африки на поверхность почвы в течение года поступает около 1200— 1500 т/га сухой массы растительных остатков. Несмотря на столь значительный спад, большая его часть быстро разрушается благодаря деятельности беспозвоночных и микроорганизмов, населяющих почву. Сплошной лесной подстилки нет, тонкий слой мертвых листьев перемежается с участками оголенной земли. Поступающие с спадом элементы захватываются сложной корневой системой многоярусного дождевого леса и вновь вовлекаются в биологический круговорот.
Рыхлые покровные отложения тропической суши — минеральный субстрат современных почв — в значительной мере состоят из сильно выщелоченных продуктов древнего выветривания, содержащих ограниченное количество форм элементов, доступных для растений. Основным источником таких форм являются разлагающиеся растительные остатки. В связи с необходимостью захватывать элементы минерального питания из продуктов разрушения опада корневая система деревьев тропического дождевого леса расположена в приповерхностной части почвы (до 50 — 70 см). В лесах Амазонии корни деревьев находятся еще ближе к поверхности — на глубине 10-—20 см (Вальтер Г., 1968).
В результате микробиологических процессов трансформация органического вещества опада в почвах дождевого леса сопровождается образованием легкорастворимых фульвокислот. Их в 5 — 6 раз больше, чем гуминовых кислот. В том случае, когда почвы образованы на хорошо промываемых продуктах выветривания кварц-содержащих кристаллических пород, рН гумусового горизонта составляет около 5. Верхняя часть профиля таких почв сильно выщелочена. Если же дождевой лес находится в вулканическом регионе и почвы формируются на продуктах выветривания молодых вулканических пород, богатых щелочами и кальцием, то значительная часть гумусовых кислот нейтрализуется и конденсируется в более крупные и менее растворимые соединения. В результате в верхней части профиля почв происходит накопление гумуса до 6 % и более, значение рН приближается к 6, фульвокислоты преобладают над гуминовыми.
В областях с коротким сухим сезоном распространены светлые тропические леса и парковые саванны. В таких условиях образуются периодически промываемые дождями почвы с нейтральной реакцией. Пышный травяной покров способствует формированию дернового и гумусового горизонтов. Иная обстановка на территории с длительными сухими сезонами и количеством атмосферных осадков от 600 до 400 мм/год и менее. В этих условиях распространены засушливые саванны, сухие листопадные леса, заросли кустарников. Полное промывание почвы не обеспечивается, микробиологическая деятельность в засушливые сезоны подавляется, степень покрытия поверхности растительностью менее 50 %. В почвах засушливых саванн и зарослей кустарников содержание гумуса незначительно, почвы имеют щелочную реакцию рН около 7 — 8.
Характерная черта тропической суши — хорошо выраженная геохимическая провинциальность почвенного покрова. Это обусловлено, во-первых, тем, что значительная часть тропической суши лишена мощного покрова аллохтонных (ледниковых или лессовых) отложений, широко распространенных на территории бореальной и суббореальной зон. Почвы тропических стран образованы преимущественно на переотложенных продуктах выветривания, претерпевших непротяженное перемещение. Во-вторых, тропические территории представляют собой фрагменты древнего суперконтинента Гондваны, поверхность которого последние полмиллиарда лет не покрывалась морем. В результате геохимические особенности состава разных пород, выходящих на поверхность, унаследованы почвами. Это способствует неодинаковым уровням содержания рассеянных элементов в растительности разных районов, находящихся в одинаковых климатических условиях.
В качестве примера приведем данные о содержании рассеянных элементов в однотипных почвах саванн Уганды и Северной Танзании. Почвы Уганды покрывают докембрийские кристаллические породы, почвы Танзании находятся в районе распространения кайнозойских вулканических пород Восточно-Африканского рифта. Они обогащены теми элементами, которые в повышенном количестве находятся в щелочных базальтах и фонолитах Восточно-Африканского рифта: цирконием, титаном, бериллием, ниобием, стронцием и др. Как следует из данных табл. 14.6, в почвах саванн Танзании по сравнению со средним содержанием в земной коре ниобия больше в 11, бериллия и молибдена — в 6, титана и циркония — в 4 раза. В свою очередь, в почвах саванн Уганды концентрация хрома выше кларкового значения в 7, меди — в 5 раз. Столь большая разница концентраций элементов в почвах отражается на соотношении масс этих элементов, захватываемых в биологический круговорот в саваннах двух соседних регионов Восточной Африки.



Таблица 14.6
Концентрация рассеянных элементов в почвах саванн Восточной Африки (по В.В.Добровольскому, 1975)

Химический
элемент
Концентрация в гумусовом
горизонте почв, мкг/г

Кларк концентрации


Уганда
Танзания
Уганда
Танзания
Ti
5820
14900
1,8
4,5
Мn
1520
2140
2,2
3,1
V
153
271
2,0
3,6
Сг
234
160
6,9
4,7
Ni
75
93
2,9
3,6
Со
48
70
6,6
9,6
Сu
104
72
4,7
3,3
Рb
52
35
3,2
2,2
Zn
125
190
2,5
3,7
Mo
5
8
3,8
6,2
Be
6
16
2,4
6,4
Sc
24
16
2,2
1,5
Y
58
64
1,6
1,8
La
85
96
1,8

Nb
59
224
2,9
11,2
Zr
215
670
1,3
3,9
Ga
16
20
0,8
1,1
Sr
129
510
0,6
2,2
Ba
274
590
0,4
0,9

С биогеохимическими процессами, происходящими в почвах, тесно связана миграция химических элементов в поверхностных водах тропической суши. Их геохимия изучена недостаточно, но имеющиеся данные указывают на то, что концентрация многих элементов в воде тропических рек ниже средних значений для рек мира. По-видимому, это объясняется двумя причинами. Во-первых, фитоценозы тропических лесов прочно удерживают необходимые им химические элементы и слабо выпускают их из системы биологического круговорота. Во-вторых, некоторые элементы, особенно тяжелые металлы, более прочно закреплены в красноцветных продуктах выветривания и развитых на них почвах, чем в отложениях четвертичного возраста, на которых образованы почвы бореального и суббореального поясов.
Установлено, что в сухие сезоны в воде тропических рек повышается концентрация солей, а также таких элементов, как бор, фтор, стронций. Исследования, проведенные А.И.Обуховым (1968) в Бирме, показали, что в сезоны дождей слабо, но отчетливо повышается концентрация металлов. Можно предположить, что это явление обусловлено не только вымыванием растворимых соединений металлов из растений и почв, но и активизацией микробиологической деятельности в почве. Значительные массы металлов переносятся тропическими реками в виде комплексных соединений с растворимыми фульвокислотами.
Наибольшее количество химических элементов мигрирует в составе взвесей. Речные взвеси в основном представляют продукты плоскостного смыва почв. Большая часть этих продуктов, энергично смываемых в сезоны дождей, не достигает речных долин и переносится в относительно пониженные участки поверхности. Одновременно в понижениях в дождливые периоды сильно поднимается уровень грунтовых вод или образуется горизонт сезонной верховодки. На участках сезонного заболачивания формируются вертисоли — серые и черные слитые тропические почвы с сообществами злаковников (грэсслендов). В экосистемах сезонных болот аккумулируются химические элементы, мигрирующие с более высокой территории, поэтому в почвах и растениях повышается концентрация рассеянных элементов вплоть до образования биогеохимических аномалий (рис. 14.1).



Рис. 14.1. Аккумуляция меди в почвах сезоннозаболачиваемой депрессии рельефа за счет выноса металлов из залежи руд, Замбия (по Дж.Уэббу и Дж.Тумсу, 1959)



14.3. Биогеохимия мангров

Мангровые заросли — характерный тип растительности побережий тропической суши. Располагаясь на участках затопления во время суточных или сизигийных приливов, мангровые заросли образуют своего рода переход от подводных морских экосистем к наземным растительным сообществам. Мангровая растительность в силу условий произрастания индифферентна к колебаниям количества атмосферных осадков, но очень чувствительна к низким температурам. Несмотря на то, что мангры являются характерной растительностью тропического пояса, они распространяются в соответствии с местными температурными условиями до 32 ° с. ш. (Бермудские острова) и 44° ю.ш. (остров Чатам).
Мангровые заросли располагаются либо на карбонатных песках, алевролитовых и глинистых илах в лагунах и мелководных заливах, либо на поверхности плотных кавернозных рифовых известняков. Реже отдельные деревья и их небольшие группы растут на кварцевых песках у берегов, сложенных выветренными кристаллическими породами. Среди мангровой растительности выделяются красные мангры, состоящие из разных видов Rhizophora, черные мангры из Avicenia и белые мангры, в составе которых обычно преобладают Laguncularia. На атоллах Индийского океана к указанным деревьям добавляются кустарники пемфиса, приуроченные к выступам плотных рифовых известняков на границе приливной полосы. Особый интерес представляет состав мангровой растительности, произрастающей на коралловых известняках и песках.
Мангры — один из наиболее продуктивных фитоценозов. Их биомасса превышает 1000 ц/га сухого растительного вещества. Годовая продукция мангровых лесов Пуэрто-Рико — от 100 до 300 ц/га сухого растительного вещества, включая листовой спад — 80-150 ц/га.
По сравнению с составом листьев деревьев, образующих тропические леса, в листьях мангровых деревьев намного больше магния, сульфатной серы, хлора, алюминия и значительно меньше калия и кремния, являющихся главными зольными элементами спада тропического леса.
Несмотря на значительную вариацию концентрации рассеянных элементов в вегетативных органах деревьев даже одного вида, существуют определенные особенности, свойственные мангровой растительности в целом. Общая биогеохимическая особенность мангров — пониженное содержание тяжелых металлов и повышенное — талассофильных элементов, в частности стронция.
Мангровая растительность чутко отражает изменение содержания металлов в окружающей среде. Из данных табл. 14.7 видно, что в листьях и тонких ветвях мангровых деревьев, растущих в приливно-отливнои зоне островов, сложенных магматическими породами, железа более 300 мкг/г, марганца более 50 мкг/г золы, в то время как в аналогичных видах, произрастающих в лагунах коралловых островов, содержание железа не достигает 200 мкг/г, а марганца — 40 мкг/г золы. Для стронция распределение концентраций противоположное: в листьях мангровых деревьев на коралловых островах содержание этого элемента более 1000 мкг/г золы, а в условиях магматических островов — меньше этого значения.
Таблица 14.7
Концентрация тяжелых металлов и стронция в мангровой
растительности островов Индийского океана, мкг/г золы
(по В.В.Добровольскому, 1990)

Растительное сообщество
Химический элемент







Fe
Мn
Zn
Сu
Рb
Ni
Sr
Мангры коралловых островов







Rhizophora mucronata: о. Северный Пуавр, листья и тонкие ветви
126,3
36,8
28,4
18,4
0,0
5,0
1200,0
о. Южный Пуавр, листья и тонкие ветви
162,5
25,0
50,0
35,0
8,8
8,1
2000,0
о. Северный Фаркуар, листья
86,6
13,8
42,0
15,8
6,9
6,0
1333,0
о. Северный Фаркуар, тонкие ветви
76,9
32,0
60,0
36,0
6,4
2,5
3200,0
Мангры силикатных островов







Rhizophora mucronata:
о. Силуэт, листья и тонкие ветви
357,1
71,4
45,3
10,7
0,7
3,8
793,0
Bruguiera gymnorhiza: о. Силуэт, листья и тонкие ветви
437,5
306,2
70,0
20,6
2,5
0,9
963,0

Полученные данные о зольности вегетативных органов мангровых растений и концентрации в них тяжелых металлов позволяют в первом приближении оценить значения масс тяжелых металлов, захватываемых мангровыми фитоценозами на протяжении года. Наименьшая зольность свойственна ризофорам как «авангарду» мангровых сообществ — 10— 12 %. Учитывая более высокие значения зольности других мангровых деревьев и кустарников, можно считать, что среднее значение зольности вегетативных органов мангровой растительности составляет 10 — 20% от массы сухого растительного вещества.
Сумма зольных элементов, вовлекаемых в биологический круговорот в манграх, определенная на основании данных ученых США Д.Пула, А.Луго и С.Снедакера (1975) и результатов наших исследований, составляет от 8 до 30 ц/га в год, в среднем около 19 ц/га или 190 т/км2 в год. Результаты расчетов массы элементов, захватываемые на протяжении года в биологический круговорот, приведены в табл. 14.8. Средние значения концентрации элементов в золе рассчитаны для мангров, растущих на коралловых рифах и вследствие этого содержащих минимально возможные количества тяжелых металлов.
Мангры с единицы площади захватывают весьма большую массу зольных элементов, соизмеримую с массой, захватываемой тропическим лесом. Но соотношение масс элементов в продукции тропического леса и мангровых зарослей сильно различается. Мангры, растущие на коралловых рифах, захватывают значительно меньше железа и марганца. Массы других тяжелых металлов различаются не так сильно.
Особое место занимает стронций, масса которого в годовой продукции мангров в несколько раз больше, чем в продукции влажного тропического леса.
Таблица 14.8
Массы тяжелых металлов и стронция, вовлекаемые в биологический круговорот в мангровых зарослях

Химический элемент
Средняя концентрация в золе, мкг/г
Захватываемая масса, кг/(км2 • год)
Fe
113
21,5

<< Пред. стр.

страница 24
(всего 27)

ОГЛАВЛЕНИЕ

След. стр. >>

Copyright © Design by: Sunlight webdesign