LINEBURG


<< Пред. стр.

страница 3
(всего 32)

ОГЛАВЛЕНИЕ

След. стр. >>

Волго-Вятский район
21,8
55,7
22,5
Центрально-Черноземный район
20,6
54,5
24,9
Северо-Кавказский район
25,0
54,9
20,1
Уральский район
23,6
56,6
19,8
Западно-Сибирский район
24,0
58,5
17,5
Восточно-Сибирский район
26,1
58,2
15,7
Дальневосточный район
24,6
62,1
13,3
Источник. Демографический ежегодник России : Стат. сборник. - М.: Госкомстат России, 1996. - С. 46 - 48.




При построении таблиц необходимо руководствоваться следу-j ющими общими правилами.
Подлежащее таблицы располагается в левой части, сказуемое -в правой, но могут быть исключения. В простой таблице (см. табл. 4.2) подлежащее, т. е. объект изучения, указано в заголовке таблицы; в комбинационной таблице подлежащее может располагаться в левой и верхней частях таблицы (см. табл. 4.4).
В таблице не должно быть ни одной лишней линии, только необходимые: линия, отделяющая заголовок таблицы от заголовков ее граф, заголовки граф от цифровых данных. Иногда используется линия, отделяющая итоговую строку. Вертикальная разграфка может быть, а может и отсутствовать.
Заголовки граф содержат названия показателей (без сокращения слов), их единицы измерения. Последние могут указываться как в заголовке соответствующей графы, так и в заголовке таблицы или над таблицей (см., например, табл. 4.4), если все показатели таблицы выражены в одних и тех же единицах измерения и счета.
Итоговая строка завершает таблицу и располагается в конце таблицы, но иногда бывает первой: в этом случае во второй строке дается запись «в том числе», и последующие строки содержат составляющие итоговой строки, но не все, а основные.
Цифровые данные записываются с одной и той же степенью точности в пределах каждой графы; при этом обязательно разряды чисел располагаются под разрядами; целая часть числа отделяется от дробной запятой, например, 4,5, а не 4.5. Заметим, что в международных статистических публикациях используется вместо запятой «точка»; цифры целой части числа в два раза больше дробной 4.5. В таблице не должно быть ни одной пустой клетки: если данные равны нулю, ставится знак «—» (прочерк); если данные не известны, делается запись «сведений нет» или ставится знак «...» (трое-точие). Если значение показателя не равно нулю, но первая значащая цифра появляется после принятой степени точности, то делается запись 0,0 (если, скажем, была принята степень точности 0,1),
Если таблица имеет много граф, то графы подлежащего обозначаются заглавными буквами («А», «Б»), а графы сказуемого - цифрами (1, 2 и т.д.). Это бывает удобно; если таблица имеет много строк и печатается на нескольких страницах, то заголовки граф не повторяются, а указываются только их обозначения.
Если таблица основана на заимствованных данных, то под таблицей указывается источник данных (см., например, табл. 4.2).
Если хотите, чтобы построенная вами таблица была понятна и удобна для пользования, не пренебрегайте ни одним из указанных правил.

4.2. Основные виды графиков

Иногда статистические таблицы дополняются графиками, когда ставится цель подчеркнуть какую-то особенность данных, провести их сравнение. Графики являются самой эффективной формой представления данных с точки зрения их восприятия. Часто графики используются и вне связи с таблицей. С помощью графиков достигается наглядность характеристики структуры, динамики, взаимосвязи явлений, их сравнения.
Статистические графики представляют собой условные изображения числовых величин и их соотношений посредством линий, геометрических фигур, рисунков или географических карт-схем.
Графический способ облегчает рассмотрение статистических данных, делает их наглядными, выразительными, обозримыми. На графике сразу видны пределы изменения показателя, сравнительная скорость изменения разных показателей, их колеблемость. Вместе с тем графики имеют определенные ограничения: прежде всего график не может включить столько данных, сколько может войти в таблицу; кроме того, на графике показываются всегда округленные данные - не точные, а приблизительные. Таким образом, график используется только для изображения общей ситуации, а не деталей. Последний минус-трудоемкость построения графиков. Но этот недостаток может быть преодолен использованием пакетов прикладных программ для компьютерной графики, например ППП «Harvard graphics».
По способу построения графики делятся на диаграммы, картограммы и картодиаграммы.
Наиболее распространенным способом графического изображения данных являются диаграммы. Они бывают разных видов:
линейные, радиальные, точечные, плоскостные, объемные, фигурные. Вид диаграмм зависит от вида представляемых данных (одна переменная или один показатель, несколько переменных или показателей, количественные или неколичественные) и задачи построения графика.
В любом случае график обязательно сопровождается заголовком -над или под полем графика. В заголовке указывается, какой показатель изображен, в каких единицах измерения, по какой территории и за какое время он определен.
Линейные графики используются для представления количественных переменных: характеристики вариации их значений, динамики, взаимосвязи между переменными.
Вариация данных анализируется с помощью полигона распределения, кумуляты (кривой «меньше, чем») и огивы (кривой «больше, чем»). Все эти виды графиков рассматриваются в главе 5. Линейные графики используются в решении задач классификации данных (см. гл. 6). Применение линейных графиков в анализе динамики рассмотрено в главе 9, а использование их для анализа связей -в главе 8. В этих же главах рассмотрено использование точечных диаграмм (см., например, поле корреляции в гл. 8).
Линейные графики целесообразно разделять на используемые для представления данных по однойпеременной - одномерные или по двум переменным - двумерные. Примером первого является полигон распределения, второго - линия регрессии. Но может быть такой случай, когда на графике представлено несколько переменных (показателей), а он все-таки не является многомерным. Например, на рис. 4.1 представлена динамика объема продукции промышленного и сельскохозяйственного производства в России & 1990-1996 гг.
Для того чтобы динамика двух и более показателей была сопоставимой, следует обеспечить их «единый старт», как это сделано на рис. 4.1, где объемы продукции 1990 г. приняты за 100%.


Рис. 4.1. Динамика объема продукции промышленного и
сельскохозяйственного производства в России в 1990-1996 гг.

Динамика двух показателей на одном и том же графике может • быть представлена и без приведения их к 100%, если эти показатели связаны каким-либо функциональным соотношением (например, представлена динамика общего показателя и показателя, который является одним из его составляющих). Примером такого графика является рис. 4.2.
При графическом изображении динамики ро оси абсцисс показывается время (годы, кварталы, месяцы); по оси ординат - значения показателей или 'показателя. При этом ось ординат должна иметь начало в точке «нуль». Иногда вместо нулевой точки в качестве начального уровня на оси ординат показывается уровень какого-либо года. Это делается в том случае, если изменения изображаемого показателя значительны - в 8-10 и более раз в течение рассматриваемого отрезка времени. Однако такой прием не рекомендуется. Правильнее указать нулевую точку, а затем (если нужно) «разорвать» ось ординат так, как это показано на рис. 4.3, б.




Рис. 4.2. Международная миграция России

Иногда при больших изменениях показателя прибегают к логарифмической шкале. Предположим, значения показателя изменяются от 1 до 100 (в 100 раз); это может вызвать затруднения при построении графика. Если перейти к логарифмам, то их значения для минимальных-максимальных значений показателя будут различаться не так сильно: log 1= 0, log 100 = 2.
Среди плоскостных диаграмм по частоте использования выделяются столбиковые диаграммы, на которых показатель представляется в виде столбика, высота которого соответствует значению показателя. Пример столбиковой диаграммы представлен на рис. 4.4. Часто на столбиковой диаграмме показываются относительные величины: при сравнении показателей по группам, по разным сово-купностям, одна из которых может быть принята за 100%.


Рис 4.3. Включение нулевой точки при изображении динамики



Рис. 4.4. Общие показатели рождаемости, смертности и
естественного прироста населения России

Пропорциональность площади той или иной геометрической] фигуры величине показателя лежит в основе других видов плоскостных диаграмм: треугольных, квадратных, прямоугольных. В треугольной диаграмме нужно так выбрать стороны и высоту треугольника, чтобы его площадь отвечала величине показателя. Для построения квадратной диаграммы нужно задать размер одной стороны, прямоугольной - двух сторон. Можно использовать и сравнение площадей круга; в этом случае задается радиус окружности.
Ленточная диаграмма представляет показатели в виде горизон- \ тально вытянутых прямоугольников. Как столбиковые, так и лен- 1 точные диаграммы можно применять не только для сравнения са- \ мих величин, но и для сравнения их частей (рис. 4.5 и 4.6).


Рис. 4.5. Доля безработных в экономически активном населении
Санкт-Петербурга

Особый тип ленточных диаграмм применяется для представления данных с разным характером изменений: положительным и отрицательным (рис. 4.7).
Диаграмма вида 4.7 может использоваться, например, для представления регионов с разной величиной и характером миграционного сальдо (положительным и отрицательным) предприятий, на которых повысилась и понизилась оплата труда, и т. д.


Рис. 4.6. Структура расходов центральных правительственных
органов (в % к общим расходам федерального правительства)


Рис. 4.7. Изменение объема производства на предприятиях
текстильной промышленности города (1996 г. по
сравнению с 1995 г., в %)




Рис. 4.8. Структура беженцев и вынужденных переселенцев
в России в 1996 г.

Из плоскостных диаграмм часто используется секторная диаграмма. Она применяется для иллюстрации структуры изучаемой совокупности. Вся совокупность принимается за 100%, ей соответствует общая площадь круга, площади секторов соответствуй! частям совокупности (рис. 4.8).
Фигурные (или картинные) диаграммы усиливают наглядност изображения, так как включают рисунок изображаемого показателя. Размер рисунка соответствует размеру показателя (рис. 4.9).


Рис. 4.9. Потребление хлебных продуктов на душу населения в 1994 г.

Если, например, вы решите использовать фигурную диаграмму для изображения структуры безработных женщин, среди который 57% - молодые женщины (20-24 года) и девушки 16-19 лет, не имеющие стажа работы; 28% - инженерно-технические работники и служащие со специальным образованием в возрасте 25-49 лет и 15% - работницы квалифицированного и неквалифицированного труда в возрасте 50 лет и старше, вы должны изобразить три женские фигуры, причем первая из них должна быть в 2 раза больше вгорой, а вторая - почти в 2 раза больше третьей. При построении графика одинаково важно все - правильный выбор вида графического изображения, пропорции, соблюдение правил оформления графиков. Подробнее все эти вопросы освещаются в литературе, рекомендованной к данной главе.
Разнообразные виды графиков позволяют получить ППП для ПЭВМ «Harvard-graphics», «Supercalc», «Statistica», «Statgraphics» и др. На графическом представлении основаны некоторые процедуры классификации (группировки) данных, анализа динамики: выявление тенденции, сравнение динамики разных показателей и т. д.

4.3. Картограммы и картодиаграммы

Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений. Они показывают размещение изучаемого явления, его интенсивность на определенной территории - в республике, области, экономическом или административном районе и т. д.
На картограмме распределение изучаемого признака по территории изображается условными знаками (точками, штриховкой, цветом и т. д.), соответствующими определенным интервалам значений величины этого признака. Эти знаки покрывают контур каждого района. Картограмма применяется в тех случаях, когда возникает необходимость показать территориальное распределение какого-нибудь одного статистического признака между отдельными районами для выявления закономерностей этого распределения.
Картограммы бывают фоновые и точечные. На фоновых картограммах распределение изучаемого явления на территории изображается различными раскрасками территориальных единиц с разной густотой цвета. Часто вместо раскраски применяется штриховка различной интенсивности. Такие картограммы обычно используются для изображения уровня относительных и средних величин по территориям. Например, имеются данные об урожайности зерновых по 10 районам области: урожайность до 20 ц/га имеют три смежных района, 20-30 ц/га - четыре смежных района, свыше 30 ц/га -три смежных района. Соответствующая фоновая картограмма представлена на рис. 4.10. Чем более интенсивно явление, тем гуще штриховка (точки) или темнее окраска. Такая картограмма наглядно показывает географию урожайности зерновых культур по районам. Чем больше групп, тем точнее изображение, но большое число групп создает пестроту, снижает наглядность. Поэтому практически лучше всего применять не более четырех-пяти тонов градаций плотности цтриховки.



Рис. 4.10. География распределения районов по урожайности зерновых

На точечной картограмме символами графического изображения статистических данных являются точки, размещенные в пределах определенных территориальных границ. Точечная картограмма применяется для размещеня абсолютных величии. Каждой точке, нанесенной на картограмму, придается числовое значение, что позволяет использовать ее для прямого счета. Например, имеются четыре района с добычей угля в 200, 50, 1000 и 1400 тыс. т в год. Для составления картограммы примем точку за 100 тыс. т и нанесем на контур каждого района соответствующее количество точек (рис. 4.11).




Рис. 4.11. Добыча угля по районам


Картодиаграмма - это сочетание диаграммы с географическс картой. В качестве изобразительных знаков в картодиаграммах используются те или иные фигуры, которые размещаются на контуре географической карты. Картодиаграммы дают возможность графически отразить боле сложные статистико-географические соотношения чем картограммы. Так, при помощи картодиаграммы можно выразить пространственную специфику в структурах изучаемых статистических совокупностей, особенности каждого района как единого целого и т. д. Например, структурная или секторная картодиаграмма, характеризующая порайонные различия в структуре посевных площадей. B качестве диаграммных знаков в картодиаграмме часто используют различные геометрические фигуры, особенно круги, которые наиболее просты и удобны для выражения сравниваемых количественных показателей на карте.
Кроме рассмотренных видов диаграмм, картограмм и картодиаграмм на практике встречаются и другие, более сложные графические изображения статистических данных.

Рекомендуемая литература к главе 4

1. ГерчукЯ. П. Графические методы в статистике. - М.: Статистика, 1968.
2. Герчук Я. П. Графики в математико-статистическом анализе. - М.: Статистика, 1972.
3. Теория статистики /Под ред. Р. А.Шмойловой. - 3-е изд., перераб. - М.: Финансы и статистика, 1998.





















Глава 5
СРЕДНИЕ ВЕЛИЧИНЫ
И ИЗУЧЕНИЕ ВАРИАЦИИ

5.1. Однородность и изучение массовых явлений

Как уже сказано ранее, статистика изучает массовые явления и процессы. Каждое из таких явлений обладает как общими для всей совокупности, так и особенными, индивидуальными свойствами. Различие между индивидуальными явлениями называют вариацией, о ней подробно будет сказано в п. 5.5. Здесь же рассмотрим другое свойство массовых явлений - присущую им близость характеристик отдельных явлений. Если в сосуд с горячей водой добавить холодную, то температура воды во всем сосуде станет одинаковой (осреднится). Поведение детей, поступивших в одну группу детского садика или в один класс школы, тоже приобретает до какой-то степени общие, усредненные черты. Массовое промышленное производство невозможно без стандартизации, т. е. усреднения размеров деталей собираемых механизмов, узлов, агрегатов. Введение севооборота, т. е. ротация разных культур по нескольким участкам пашни, приведет к выравниванию плодородия и механических свойств почвы на этих севооборотных полях. Итак, взаимодействие элементов совокупности приводит к ограничению вариации хотя бы части их свойств. Эта тенденция существует объективно. Именно в ее объективности заключена причина широчайшего применения средних величин на практике и в теории.
Каждому рабочему известно, что оплата за простой не по вине рабочего производится по средним расценкам или по среднечасовому заработку. Каждому студенту известно, что такое средний балл на экзаменах. О средних величинах и серьезно, и с насмешкой говорят и пишут философы и журналисты. С помощью метода средних величин статистика решает много задач.
Главное значение средних величин состоит в их обобщающей функции, т. е. замене множества различных индивидуальных значений признака средней величиной, характеризующей всю совокупность явлений. Всем известны особенности развития современных людей, проявляющиеся в том числе и в более высоком росте сыновей по сравнению с отцами, дочерей в сравнении с матерями в том же возрасте. Но как измерить это явление? В разных семьях наблюдаются самые различные соотношения роста старшего и младшего поколения. Далеко не всякий сын выше отца и не каждая дочь выше матери. Но если измерить средний рост многих тысяч лиц, то по среднему росту сыновей и отцов, дочерей и матерей можно точно установить и сам факт акселерации, и типичную среднюю величину увеличения роста за одно поколение.
На производство одного и того же количества товара определенного вида и качества разные производители (заводы, фирмы) затрачивают неодинаковое количество труда и материальных ресурсов. Но рынок осредняет эти затраты, и стоимость товара определяется средним расходом ресурсов на производство,
Погода в определенном пункте земного шара в один и тот же день в разные годы может быть очень различной. Например, в Санкт-Петербурге 31 марта температура воздуха за сто с лишним лет наблюдений колебалась от -20,1° в 1883 г. до +12,24° в 1920 г. Примерно такие же колебания наблюдаются и в другие дни года. По таким индивидуальным данным о погоде в какой-то произвольно взятый год нельзя составить представление о климате Санкт-Петербурга. Характеристики климата - это средние за длительный период характеристики погоды - температуры воздуха, его влажность, скорость ветра, сумма осадков, число часов солнечного сияния за неделю, месяц и весь год и т.д. Приведем еще один пример осреднения, его роли, в управлении важнейшими и опасными процессами, от которых зависит жизнь людей. Физика установила, что невозможно предсказать, когда произойдет распад ядра радиоактивного атома, например изотопа уран-235. Атом может распасться через секунду или через тысячу лет. Но в массе атомов (например, находящихся в стержнях реактора АЭС) точно можно измерить среднюю скорость распада (обычно используют показатель «время полураспада» - время, за которое распадается половина атомов). Вводя вещества-замедлители образующихся при распаде атомов урана частиц, или убирая их, можно управлять скоростью цепной реакции в урановых стержнях, регулировать мощность реактора, вводить ее в безопасные и экономически выгодные границы.
Если средняя величина обобщает качественно однородные значения признака, то она является типической характеристикой признака в данной совокупности. Так, можно говорить об измерении типичного роста русских девушек рождения 1973 г. по достижении ими 20-летнего возраста. Типичной характеристикой будет средняя величина надоя молока от коров черно-пестрой породы на первом году лактации при норме кормления 12,5 кормовой единицы в сутки. Для лиц с достаточно однородным уровнем дохода, например рабочих машиностроительной отрасли, пенсионеров по старости (исключая имеющих льготы), можно определить типичные доли расходов на покупку предметов питания в их бюджете.
Однако неправильно сводить роль средних величин только к характеристике типичных значений признаков в однородных по данному признаку совокупностях. На практике значительно чаще современная статистика использует средние величины, обобщающие явно неоднородные явления, как, например, урожайность всех зерновых культур по территории всей России, включая кукурузу, дающую по 50-60 ц/га и более, и гречиху, дающую 6-10 ц/га, и плодородные черноземы Кубани, и скудные почвы Архангельской области. Или рассмотрим такую среднюю, как среднее потребление мяса на душу населения: ведь среди этого населения и дети до одного года, вовсе не потребляющие мяса, и вегетарианцы, и северяне, и южане, шахтеры, спортсмены и пенсионеры. Еще более ясна нетипичность такого среднего показателя, как произведенный национальный доход в среднем на душу населения.
Средняя величина национального дохода на душу, средняя урожайность зерновых по всей стране, среднее потребление разных продуктов питания — это характеристики государства как единой народнохозяйственной системы, это так называемые системные средние.
Системные средние могут характеризовать как пространственные или объектные системы, существующие одномоментно (государство, отрасль, регион, планета Земля и т.п.), так и динамические системы, протяженные во времени (год, десятилетие, сезон и т.п.). Примером системной средней, характеризующей период времени, может служить средняя температура воздуха в Санкт-Петербурге за 1996 г., равная +5,19°С. Эта средняя величина обобщает и летние высокие температуры +20, +25°, и зимние морозы, осень и весну, дни и ночи.
С другой стороны, средняя температура воздуха за отдельный год не является типической характеристикой климата Санкт-Петербурга, потому что в разные годы средняя температура года значительно колеблется, например за последние 30 лет от +2,90° в 1976 г. до +7,44° в 1989 г. Типической характеристикой климата будет многолетняя средняя годовая температура за десятки лет, например за 1967-1996 гг. она составила +5,05°.
Итак, типическая средняя может обобщать системные средние для однородной совокупности, или системная средняя может обобщать типические средние для единой, хотя и неоднородной, системы. При этом даже типическая средняя не является раз и навсегда данной, неизменной характеристикой.
Так, многолетняя средняя температура в Санкт-Петербурге в первые десятилетия и столетие существования города была значительно ниже; она возрастает медленно, но с ускорением за последнее столетие вследствие как роста самого города и энергопотребления в нем, что повышает температуру воздуха, так и начавшегося и ускоряющегося общего потепления на Земле. Поэтому «типичность» любой средней величины - понятие относительное, ограниченное как в пространстве, так и во времени.

5.2. Средняя арифметическая величина

Понятие средней арифметической

Виды средних величин различаются прежде всего тем, какое свойство, какой параметр исходной варьирующей массы индивидуальных значений признака должен быть сохранен неизменным.
Средней арифметической величиной называется такое среднее значение признака, при вычислении которого общий объем признака в совокупности сохраняется неизменным.
Иначе можно сказать, что средняя арифметическая величина -среднее слагаемое. При ее вычислении общий объем признака мысленно распределяется поровну между всеми единицами совокупности. Например, средняя заработная плата или средний доход работников предприятия - это такая сумма денег, которая приходилась бы на каждого работника, если бы весь фонд оплаты труда (или все доходы, направленные на личное потребление) был распределен между работниками поровну.
Исходя из определения, формула средней арифметической величины имеет вид:
Средняя арифметическая
, (5.1)
где х? - средняя величина;
п – численность совокупности.

По формуле (5.1) вычисляются средние величины первичных (объемных) признаков, если известны индивидуальные значения признака. Если изучаемая совокупность велика, исходная информация чаще представляет собой ряд распределения или группировку, как, например, табл. 5.1.
Таблица 5.1
Распределение футбольных матчей высшей лиги России по числу забитых за матч обеими командами мячей в 1996 г.

Число забитых мячей, х
0
1
2
3
4
5
6
7
8
9
Итого
Число матчей,
fi
30
56
71
59
49
24
12
3
0
2
306

Среднее число мячей, забитых за одну игру, должно представлять собой результат равномерного распределения общего числа забитых мячей по всем 306 матчам розыгрыша первенства. Общее число забитых мячей, согласно исходной информации табл. 5.1, можно получить как сумму произведений значений признака в каждой группе хi, на число игр с таким количеством забитых мячей fi (частоты). Получим формулу (5.2)
,

где п — число групп.

Такую форму средней арифметической величины называют взвешенной арифметической средней в отличие от простой средней, рассчитанной по формуле (5.1). В качестве весов выступают здесь числа единиц совокупности в разных группах. Название «вес» выражает тот факт, что разные значения признака имеют неодинаковую «важность» при расчете средней величины. «Важнее», весомее число забитых мячей, которое встречалось чаще: 1, 2, 3 мяча, а такие значения, как 7 или 9 забитых мячей, как бы ни радовались таким результативным матчам болельщики, при расчете средней не играют большой роли: их «вес» мал.
Имеем: х? = 802 : 306 = 2,62 мяча за игру.
Как видим, средняя арифметическая величина может быть дробным числом, если даже индивидуальные значения признака могут принимать только целые значения (дискретный признак). Ничего «предосудительного» для метода средних в этом не заключено; из сущности средней не вытекает, что она обязана быть реальным значением признака, которое могло бы встретиться у какой-либо единицы совокупности.

Виды средней арифметической

Если при группировке значения осредняемого признака заданы интервалами, то при расчете средней арифметической величины в качестве значения признака в группах принимают середины этих интервалов, т.е. исходят из гипотезы о равномерном распределении единиц совокупности по интервалу значений признака. Для открытых интервалов в первой и последней группе, если таковые есть, значения признака надо определить экспертным путем исходя из сущности, свойств признака и совокупности. Например, по табл. 5.2 можно минимальный возраст рабочих считать 17 лет. Тогда первый интервал будет от 17 до 20 лет, а максимальный возраст - 65 лет, тогда последний интервал - 50-65 лет.
Таблица 5.2
Распределение рабочих предприятия по возрасту





Группы рабочих по возрасту, лет
Число рабочих
fj
Середина интервала х'j
xjfj
До 20
48
18,5
888
20-30
120
25
3000
30-40
75
35
2625
40 - 50
62
45
2790
Старше 50
54
57,5
3105
Итого
359
34,56
12408

Средний возраст рабочих, рассчитанный по формуле (5.2) с заменой точных значений признака в группах серединами интервалов, составил:

что и записано в итоговую строку по графе 3 табл. 5.2. Напомним, итог объемного показателя — это сумма, итогов по графе относительных показателей или средних групповых величин — средняя. Числитель дроби - это общая сумма человеко-лет, прожитых рабочими предприятия; разделив ее на число работников, получаем возраст в годах, так что логика показателя средней величины соблюдена.
Перейдем к рассмотрению средних вторичных (относительных) признаков. Сумма таких показателей сама по себе реальной величиной какого-либо признака в совокупности не является. Однако общее определение арифметической средней сохраняет силу и в этом случае. При вычислении таких средних величин необходимо, чтобы сохранялась сумма величины объемного признака, который является числителем при построении осредняемого относительного показателя. Например, при вычислении средней величины урожайности какой-либо сельскохозяйственной культуры (по формуле (5.2)) необходимо, чтобы общий объем валового сбора этой культуры остался неизменным при замене индивидуальных величин урожайности средней величиной. Нельзя менять реальную величину объемного признака - она является базой расчета средней. Чтобы выполнить указанное условие, в качестве весов при расчете средней величины относительного показателя необходимо принять значения того признака, который является знаменателем при определении относительного показателя. Так, при вычислении средней урожайности по совокупности хозяйств весами должны служить размеры площади данной культуры.
Рассмотрим пример расчета средней доли предметов народного потребления в общем выпуске промышленной продукции по совокупности предприятий (табл. 5.3). В этом случае весом должен являться общий объем всей продукции предприятия.
Тогда средняя доля предметов народного потребления в продукции четырех предприятий равна: х = (615,5: 2047) • 100% = 30,07%. Средняя доля ближе к долям у тех предприятий, которые имеют большой объем всей продукции (предприятия № 2 и 3). Числитель средней величины - это объем выпуска предметов потребления всеми предприятиями - величина, которая должна сохраняться неизменной при замене разных четырех долей на среднюю долю. Расчет по данным табл. 5.3 проведен на основе известных индивидуальных значений осредняемого признака и весов.
Таблица 5.3
Объем и структура промышленной продукции

Номера
предприятий

Объем всей
продукции, млн
руб., fj

Доля товаров
народного потребления,
% xj,
Объем выпуска
товаров народного потребления,
млн руб., xj fj
1 138 75 103,5
2 650 38 247,0
3 1040 12 124,8
4 219 64 140,2



Итого 2047 30,07 615,5




Однако исходная информация может иметь другую форму: индивидуальные значения осредняемого признака могут быть неизвестны, зато известны индивидуальные или суммарные значения объемных признаков как числителя, так и знаменателя относительной величины. Например, известно, что в акционерном сельхозпредприя-тии было посажено 145 га картофеля и собрано с них 2595,5 т продукции. При этом совершенно неизвестно, сколько было собрано с каждого гектара из 145 га в отдельности, хотя на самом деле, конечно, индивидуальные величины продукции, полученные на каждом гектаре, существовали объективно. Однако никакой потребности в их раздельном учете нет; учет продукции ведется по бригадам, по отдельным полям севооборота, но не по каждому гектару. Среднюю урожайность картофеля получают попросту делением массы собранной продукции на площадь посадки, т. е. как относительную величину, характеризующую хозяйство в целом:

По отношению к предприятию это относительный показатель. Но существуют и сами значения урожайности с каждого из 145 га, хотя и неучтенные. По отношению к ним 17,9 т с 1 га - это средняя величина. Такую форму определения средней арифметической величины, при которой остаются неизвестными индивидуальные значения осредняемого признака, следует называть Неявной формой средней. Формула такой средней имеет вид:


Свойства арифметической средней величины

Знание некоторых математических свойств средней арифметической полезно как при ее использовании, так и при ее расчете.
1. Сумма отклонений индивидуальных значений признака от его среднего значения равна нулю.
Доказательство:

Примечание. Для взвешенной средней сумма взвешенных отклонений равна нулю.
Попробуйте доказать это самостоятельно.
2. Если каждое индивидуальное значение признака умножить или разделить на постоянное число, то и средняя увеличится или уменьшится во столько же раз.
Доказательство:

Вследствие этого свойства индивидуальные значения признака можно сократить в с раз, произвести расчет средней и результат умножить на с.
3. Если к каждому индивидуальному значению признака прибавить или из каждого значения вычесть постоянное число, то средняя величина возрастет или уменьшится на это же число.
Доказательство:

Это свойство полезно использовать при расчете средней величи-ны из многозначных и слабоварьирующих значений признака, например роста группы лиц: х1 = 179 см; х2 = 183 см; х3= 171 см; х4 = 180 см; х 5= 169 см. Для вычисления среднего роста из каждого значения вычитаем 170 см и находим среднюю из остатков:
(9+ 13 + 1 + 10 - 1) : 5 = 6,4. Средний рост = 6,4 + 170 = 176,4 см.
4. Если веса средней взвешенной умножить или разделить на постоянное число, средняя величина не изменится.
Доказательство:

Используя это свойство, при расчетах следует сокращать веса на их общий сомножитель либо выражать многозначные числа весов в более крупных единицах измерения.
В табл. 5.4 приведен пример комплексного использования свойств средней арифметической для облегчения расчетов.
Таблица 5.4
Расчет средней продуктивности коров на ферме

Группы коров
по надою за
год, кг хj
Число
Коров fj

Середина
интервала,
кг, x’j


3000 – 3400 43 3200 - 8 - 344
3400 - 3800 71 3600 - 4 - 284
3800-4200 102 4000 0 0
4200-4600 64 4400 4 256
4600 - 5000 27 4800 8 216




Итого 307 - - -156





83
Средний надой молока на корову находим так:

5. Сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем от любого другого числа.
Доказательство. Составим сумму квадратов отклонений от переменной а:

Чтобы найти экстремум этой функции, нужно ее производную по а приравнять нулю:

Отсюда имеем:

Таким образом, экстремум суммы квадратов отклонений достигается при а = х. Так как логически ясно, что максимума функция не может иметь, этот экстремум является минимумом.

Применение простой и взвешенной средней

Простая и взвешенная средние величины различаются не только по величине (не всегда), по способу вычисления, но и по своей роли в решении различных задач статистического анализа. Рассмотрим, например, среднюю величину урожайности картофеля в группе хозяйств. Если эта средняя при решении поставленной задачи входит в систему показателей площади посадки, валового сбора, себестоимости, суммы затрат и других характеристик производства, то следует применять взвешенную среднюю, так как произведение невзвешенной средней на общую сумму площадей не даст суммы валового сбора.
Если же нас интересуют такие задачи, как измерение вариации урожайности между хозяйствами или связь урожайности с дозой органических удобрений, то следует применять простую среднюю величину урожайности, полностью абстрагируясь от размеров площадей посадки. Иначе на полученный результат повлияют различия площадей, совершенно не касающиеся этого признака. Точно так же, если необходимо изучить колебания урожайности за ряд лет и выявить их связь с температурой июня и суммой осадков за лето, нужно применять простую среднюю урожайность за ряд лет, абстрагируясь от различия размеров площадей в разные годы.
Чтобы правильно применять средние величины, следует знать, от каких причин зависит различие между простой и взвешенной средними. Рассмотрим этот вопрос на примере арифметической средней. Пусть x? - простая средняя, х?z - взвешенная средняя, в которой весами выступают значения признака z, п - число единиц совокупности. Отклонения индивидуальных значений признака хi от простой средней х? обозначим ?xi = хi - х?. Отклонения признака веса ?zi = zi -z?. Тогда индивидуальные значения признаков х и z можно выразить через их средние и отклонения: хi = х? + ?xi; zi = z? + ?zi, а взвешенную среднюю х, представить в виде

Перемножим величины в скобках и просуммируем почленно, имея в виду, что . Средние величины можно вынести за знак суммирования, как константы. Получим:

Так как суммы отклонений индивидуальных значений признака от средней арифметической согласно первому ее свойству равны нулю, то второе и третье слагаемые числителя также равны нулю.
Остается:

Числитель второго слагаемого в формуле (5.4) - это числитель коэффициента корреляции между осредняемым и весовым признаками (см. формулы 8.11 и 8.14). Подставив выражение коэффициента корреляции /^ в (5.4), получим:

Итак, средняя арифметическая взвешенная равна простой средней плюс произведение среднего квадратического отклонения ос-редняемого признака на коэффициент вариации весового признака и на коэффициент корреляции между этими признаками. Если обе части равенства (5.5) разделить на простую среднюю х, получим:

(О среднем квадратическом отклонении и коэффициенте вариации см. ниже в этой главе.)
Из (5.5) следует, что взвешенная средняя равна простой в трех случаях:
• а) если не варьирует изучаемый признак, ух = 0 - тривиальная ситуация, когда и сами средние не нужны;
• б) при условии, что не варьирует признак-вес vz = 0;
• в) в случаях, когда между осредняемым и признаком-весом нет линейной корреляции, rxz = 0.
Взвешенная средняя больше простой, если эта корреляция прямая. Взвешенная средняя меньше простой средней, если эта корреляция обратная.




5.3. Другие формы срдних величин

<< Пред. стр.

страница 3
(всего 32)

ОГЛАВЛЕНИЕ

След. стр. >>

Copyright © Design by: Sunlight webdesign