LINEBURG


<< Пред. стр.

страница 18
(всего 32)

ОГЛАВЛЕНИЕ

След. стр. >>

В моментном ряду роль, смысл среднего уровня в том, что он характеризует уже не состояние объекта в отдельные моменты, а его среднее, обобщенное состояние между начальным и конечным моментом учета. Из этого следует, что роль уровней, отно-t сящихся к начальному и конечному моменту, существенно иная, чем роль уровней на моменты внутри изучаемого отрезка времени. Начальный и конечный уровни находятся на границе изучаемого интервала, они наполовину относятся к предыдущему и последующему интервалам и лишь наполовину к изучаемому. Уровни, относящиеся к моментам внутри осредняемого интервала, целиком относятся только к нему. Отсюда получаем особую форму средней арифметической величины, называемой хронологической средней:


Проблема вычисления среднего уровня моментного ряда при неравных промежутках между моментами является спорной и здесь не рассматривается.
Если известны точные даты изменения уровней моментного ряда то средний уровень определяется как



где ti - время, в течение которого сохранялся уровень.

Средний абсолютный прирост (абсолютное изменение) определяется как простая арифметическая средняя из абсолютных изменений за равные промежутки времени (цепных абсолютных изменений) или как частное от деления базисного абсолютного изменения на число осредняемых отрезков времени от базисного до сравниваемого периода:


Как уже сказано в п. 9.1, при наличии существенной колеблемости уровней средний абсолютный прирост (изменение), как и средний темп следует вычислять, отделив сначала тренд от колебаний (соответствующая методика будет изложена ниже). Прямое определение среднего абсолютного прироста по крайним уровням ряда допустимо, если нет существенных колебаний уровней. Например, добыча угля в России довольно равномерно снижалась с 337 млн т в 1992 г. до 262 млн т в 1995 г [10 Россия в цифрах. 1996: Статистический сборник / Госкомстат России. -М.: Финансы и статистика, 1996. — С. 297.]
.
По формуле (9.14) среднее годовое сокращение добычи угля составило: 25 млн т в год. Итак, добыча угля в период 1992 - 1995 гг. в среднем за год снижалась на 25 млн т в год, или на 2,08 млн т в месяц.
Для правильной интерпретации показатель среднего абсолютного изменения должен сопровождаться указанием двух единиц времени: 1) время, за которое он вычислен, к которому относится и которое он характеризует (в нашем примере это трехлетие - 1992 - 1995);
2) время, на которое показатель рассчитан, время, входящее в его единицу измерения, - 1 год. Можно рассчитать среднемесячный прирост за пятилетие, среднесуточное изменение за год, за месяц, за квартал.
Среднее ускорение абсолютного изменения применяется реже. Для его надежного расчета даже при слабых колебаниях уровней требуется применять методику аналитического выравнивания по параболе II порядка (см. п. 9.5 и 9.6). Не рекомендуется измерять среднее ускорение без абстрагирования от колебаний уровней. Для более грубого, приближенного расчета среднего ускорения можно воспользоваться средними годовыми уровнями, сглаживающими колебания. Например, среднегодовое производство мяса в Российской Федерации составляло:

Годы 1976 - 1980 1981 - 1985 1986 - 1990
Млн т 7,40 8,09 9,68

Абсолютный прирост за второе пятилетие в сравнении с первым составил 0,69 млн т, за третье в сравнении со вторым - 1,59 млн т. Следовательно, ускорение в третьем пятилетии по сравнению со вторым составило 1,59 - 0,69 = 0,90 млн т в год за пять лет, а среднегодовое ускорение прироста равно: 0,90 : 5 = 0,18 млн т в год за год. Среднее ускорение требует указания трех единиц времени, хотя, как правило, две из них одинаковы: период, на который рассчитан прирост, и время, на которое рассчитано ускорение.
Средний темп изменения определяется наиболее точно при аналитическом выравнивании динамического ряда по экспоненте (см. п. 9.5 и 9.6). Если можно пренебречь колеблемостью, то средний темп определяют как геометрическую среднюю (см. гл. 5) из цепных темпов роста за п лет или из общего (базисного) темпа роста за п лет:



Например, стоимость потребительской корзины за год в результате инфляции возросла в 6 раз. Каков средний месячный темп инфляции?


т.е. в среднем за месяц цена увеличивалась на 16% к уровню предыдущего месяца.
Средний темп роста так же, как средний прирост, следует сопровождать указанием двух единиц времени: 1) периода, который им характеризуется; 2) периода, на который рассчитан темп. Например, среднегодовой темп за последнее десятилетие; среднемесячный темп за полугодие и т.п.
Если исходной информацией служат темпы прироста и нужно вычислить их среднегодовую величину, то предварительно следует все темпы прироста превратить в темпы роста, прибавив 1, или 100%, вычислить их среднюю геометрическую и снова вычесть 1, или 100%. Интересно, что ввиду асимметрии темпа прироста и темпа сокращения при равных их величинах общий темп прироста всегда отрицателен. Так, если за первый год объем производства вырос на 20%, а за второй снизился на 20% (темпы цепные), то за два года имеем:

Как отмечалось в главе 5, применяя для вычисления среднего темпа среднюю геометрическую, мы опираемся на соблюдение фактического отношение конечного уровня к начальному при замене фактических темпов на средние. В практических задачах может потребоваться вычисление среднего уровня при условии соблюдения отношения суммы уровней за период к уровню, принятому за базу. Например, если общий выпуск продукции за пятилетие должен составить 800% к базисному (среднегодовому за предыдущие 5 лет выпуску), или, что то же самое, среднегодовой уровень должен составить 160% к базовому уровню, каков должен быть среднегодовой темп роста выпуска продукции? В 1974 г. украинские статистики А. и И. Соляники предложили следующую приближенную формулу для среднего темпа роста, удовлетворяющую этому условию:

где т - число суммируемых уровней;
у0 - базисный уровень.


Расчет по этому среднегодовому темпу дает сумму выпуска за 5 лет в 8,069 раза больше базисной, т.е. приближение хорошее. В общем виде проблема параболических темпов исследована саратовским статистиком Л. С. Казинцом в книге «Темпы роста и абсолютные приросты» (М.: Статистика, 1975). Им составлены таблицы, с помощью которых, зная отношение суммы уровней к базисному уровню и число суммируемых уровней т, можно получить knap. Таблица Л. С. Казинца рассчитана на основе нахождения корней уравнения:

Для нашего примера таблица Л. С. Казинца дает среднегодовой темп роста 116,1% и сумму выпуска в 8,00016 раза больше базисной.
Если необходимо определить средний темп изменения, исходя из заданной на п периодов суммы абсолютных изменений, то следует использовать формулу (9.17):

Годы
Добыча, млн т
Абсолютный прирост, млн т/год
1995
1996
1997
1998
1999
2000
262 -
262·1,09476 =.286,8
286,8·1,09476=314,0
314,0·1,09476 = 343,8
343,8·1,09476 = 376,3
376,3·1,09476 = 412,0
-
24,8
27,2
29,8
32,5
35,7
Итого
1732,9
150,0

Интересную задачу представляет определение срока, за который ряд с большим средним показателем динамики, но меньшим начальным уровнем догонит другой ряд с большим начальным уровнем, но меньшим показателем динамики.



Та же задача может быть решена на основе ускорений. Имеем первый ряд с базисным уровнем у01, базисным абсолютным изменением a01 и средним ускорением b1; второй ряд - с показателями у02, а02, b02. При каком числе п периодов (лет) после базисного уровня рядов сравняются?
Тенденции рядов параболические:

Приравняв правые части уравнений, получим: '

или

Искомый срок п является корнем этого квадратного уравнения. Если, например, имеем:

Откуда

Второй ряд догонит первый по уровню через 38,4 года; в прошлом уровни рядов были одинаковы 10,4 года назад. Будущие равные уровни составляют 3510, а прошлые были равны 192.
Если мы хотим найти срок п, через который уровни рядов сравняются, то эту задачу можно решить и на основе средних темпов динамики.
Имеем:

Логарифмируя это равенство получаем:

Откуда


т. е. искомый срок равен частному от деления разности логарифмов уровней рядов в базисном периоде на разность логарифмов темпов изменения, только переставленных при вычитании. Обычно и в числителе, и в знаменателе от большего логарифма вычитается меньший. Например, первый ряд имеет у10 = 300; k1 =1,09; второй ряд имеет у110 100; k11 = 1,2. Тогда:



Через 11,43 года уровень второго ряда сравняется с первым при сохранении экспоненциальных трендов обоих рядов.

9.5. Методы выявления типа тенденции динамики

Прежде чем применить методы математического анализа для вычисления параметров уравнения тренда, необходимо выявить тип тенденции, а эта задача не является чисто математической. Наличие колебаний уровней крайне усложняет выявление типа тенденции и требует всестороннего подхода к этой проблеме, прежде всего качественного изучения характера развития объекта. При этом нужно дать ответ на такие вопросы:
1. Были ли условия развития объекта достаточно однородными в изучаемый период?
2. Каков характер действия основных факторов развития?
3. Не произошло ли качественное, существенное изменение условий развития объекта внутри изучаемого периода времени?
Если, например, часть периода предприятие работало по старой технологии, а затем произошло техническое перевооружение - введены новые цехи, поточные линий, то единой тенденции показателей за весь период не будет, скорее всего нужна «периодизация» ряда, т.е. его дробление на отдельные подпериоды: до реконструкции, во время таковой (если она длительна) и после освоения новой технологии.
Чем крупнее изучаемая система, чем больше факторов влияют на динамику изучаемого признака, тем реже возможны резкие, скачкообразные изменения в ряду динамики (не колебания, а именно изменения в тенденции). Большие и сложные системы обладают значительной инерцией, и для скачкообразного, резкого изменения тенденции такой системы требуются большие затраты ресурсов, которые общество выделить не в состоянии. Поэтому такое столь коренное изменение в экономике, как переход от командно-административного планового хозяйства к рыночной регулируемой экономике, в масштабе нашей страны неизбежно займет достаточно большое время, за которое сформируются новые тенденции народнохозяйственных показателей. Чтобы разглядеть эти новые тенденции, понадобится время.
Напротив, в масштабе отдельных предприятий вполне возможны резкие изменения, переходы от одной тенденции к другой.
Рассмотрим некоторые основные типы уравнений тренда, выражающие те или иные качественные свойства развития.
А. Линейная форма тренда:
у? = а + bt, (9.20)
где у? — уровни, освобожденные от колебаний, выравненные по прямой;
а - начальный уровень тренда в момент или период, принятый за начало отсчета времени t;
b - среднегодовой абсолютный прирост (среднее изменение за единицу времени); константа тренда.

Линейный тренд хорошо отражает тенденцию изменений при действии множества разнообразных факторов, изменяющихся различным образом по разным закономерностям. Равнодействующая этих факторов при взаимопогашении особенностей отдельных факторов (ускорение, замедление, нелинейность) часто выражается в • примерно постоянной абсолютной скорости изменения, т.е. в прямолинейном тренде. Таковы, например, тенденции динамики урожайности для масштаба области, республики, крупного региона, страны в целом.
Б. Параболическая форма тренда:
?у = а + bt + сt2, (9.21)
где с - квадратический параметр, равный половине ускорения; константа параболического тренда. Остальные обозначения прежние.

Параболическая форма тренда выражает ускоренное или замедленное изменение уровней ряда с постоянным ускорением. Такой характер развития можно ожидать при наличии важных факторов прогрессивного развития (прогрессирующее поступление нового высокопроизводительного оборудования, увеличение среднесуточного прироста живого веса поросят с возрастом и т.п.). Ускоренное возрастание может происходить в период после снятия каких-то сдерживающих развитие преград - ограничений в распределении дохода, в уровне оплаты труда, при повышении цены реализации на дефицитную продукцию.
Параболическая форма тренда с отрицательным ускорением (с < 0) приводит со временем не только к приостановке роста уровня, но и к его снижению со все большей скоростью. Такой характер развития может быть свойствен производству устаревшей продукции, ликвидируемой отрасли сельского хозяйства на предприятии (ферме) и т.п.
Парабола 2-го порядка (квадратическая) имеет либо максимум (если с < 0 и b > 0), либо минимум (b < 0, с > 0). Для нахождения экстремума производную параболы по времени t следует приравнять нулю и решить полученное уравнение относительно t. Например, если население города (тыс. чел.) возрастает по параболе
у =1800 + 80t - 2t2,
то производная по времени df/dt будет иметь вид: 80 - 4t = 0, откуда t = 20. Максимум населения будет достигнут через 20 лет после начала отсчета времени, и это максимальное население составит:
y?max = 1800 + 80· 20 - 2·202 = 2600 тыс. человек.
В. Экспоненциальная форма тренда:

где k — темп изменения в разах; константа тренда.

Если k > 1, экспоненциальный тренд выражает тенденцию ускоренного и все более ускоряющегося возрастания уровней. Такой характер свойствен, например, размножению организмов при отсутствии ограничения со стороны среды: кормов, пространства, хищников, болезней. При росте по экспоненте абсолютный прирост пропорционален достигнутому уровню. Так росло население Земли в эпоху «демографического взрыва» в XX столетии; сейчас этот период заканчивается и темп роста населения стал уменьшаться. Если бы он остался на уровне 1960 - 1970 гг. т. е. около 2% прироста в год от 1985 г., когда население составило 5 млрд чел., то к 2500 г. население Земли достигло бы уровня: 5 млрд·1,02515 = 134 трлн 286 млрд человек; на 1 человека приходилось бы примерно 1 м2 всей площади суши. Ясно, что рост любого объекта по экспоненциальному закону может продолжаться только небольшой исторический период времени, ибо ресурсы для любого процесса развития всегда встретят ограничения.
При k < 1 экспоненциальный тренд означает тенденцию постоянно все более замедляющегося снижения уровней динамического ряда. Такая тенденция может быть присуща динамике трудоемкости продукции, удельных затрат топлива, металла на единицу полезного эффекта (на 1 кВт ч, на 1 м2 жилой площади и т.д.) при технологическом прогрессе; экстремальных точек экспонента не имеет.
Г. Логарифмическая форма тренда:
у? = а + blogt. (9.23)
Логарифмический тренд пригоден для отображения тенденции замедляющегося роста уровней при отсутствии предельного возможного значения. Замедление роста становится все меньше и меньше, и при достаточно большом t логарифмическая кривая становится малоотличимой от прямой линии. Логарифмический тренд пригоден для отображения роста спортивных достижений (чем они выше, тем труднее их улучшать), роста производительности агрегата по мере его освоения и совершенствования, повышения продуктивности скота или вообще эффективности системы при ее совершенствовании без качественных, коренных преобразований. Экстремума логарифмическая кривая не имеет.
Д. Тренд в форме степенной кривой:
y? = ath, (9.24)
где b - константа тренда.

При b = 1 имеем линейный тренд, b = 2 - параболический и т.п. Степенная форма - гибкая, пригодная для отображения изменений с разной мерой пропорциональности изменений во времени. Жестким условием является обязательное прохождение через начало координат: при t = 0, у = 0. Можно усложнить форму тренда: уЮ = а + th или уЮ = а + cth, но эти уравнения нельзя логарифмировать, трудно вычислять параметры, и они крайне редко применяются.
Е. Гиперболическая форма тренда:

Если b > 0, гиперболический тренд выражает тенденцию замедляющегося снижения уровня, стремящегося к пределу а. Если b < 0, тренд выражает тенденцию замедляющегося роста уровней, стремящихся в пределе к а. Следовательно, гиперболическая форма тренда подходит для отображения тенденции, процессов, ограниченных предельным значением уровня (предельным коэффициентом полезного действия двигателя, пределом 100%-ной грамотности населения и т.п.).
Ж. Логистическая форма тренда:


Логистическая кривая имеет форму латинской буквы s положенной на бок, отчего еще называется эсобризной кривой. Она имеет два перегиба: от ускоряющегося роста к равномерному (вогнутость) и от равномерного роста посреди периода к замедляющемуся (выпуклость). Она подходит для отображения развития в течение длительного периода, проходящего все фазы, например процесса насыщения потребителей каким-то новым товаром, скажем, телевизорами: сначала медленный, но все ускоряющийся рост доли семей, имеющих телевизор, затем рост равномерный (примерно от 30 -40% семей до 70 - 80%). Затем рост доли семей, имеющих телевизор, замедляется по мере приближения доли к 100%. Если ymin = 0, ymax = 100% или 1, уравнение упрощается до формы

После теоретического исследования особенностей разных форм тренда необходимо обратиться к фактическому ряду динамики, тем более что далеко не всегда можно надежно установить, какой должна быть форма тренда из чисто теоретических соображений. По фактическому динамическому ряду тип тренда устанавливают на основе графического изображения, путем осреднения показателей динамики, на основе статистической проверки гипотезы о постоянстве параметра тренда.
На рис. 9.1 достаточно хорошо видно, что тренд урожайности выражен прямой линией. Исходный ряд уровней короткий, поэтому на данном примере нельзя использовать другие приемы. Применим их к анализу динамики индекса цен на нетопливные товары развивающихся стран за 1979 - 1995 гг. [11 International Monetary fund // World Economic Outlook. - Washington: D. C., 1996.- P. 68.]
Скользящая пятилетняя средняя, сглаживая колебания отдельных уровней, довольно отчетливо показывает тенденцию равномерного снижения уровней. Если разбить ряд на три части, то средние уровни также подтверждают этот вывод: за 1979 - 1983 гг. средний уровень равен 112,3; за 1984 - 1989 гг. - 103,0; за 1990 -1995 гг. - 97,0. Существенного различия в величине снижения среднегодовых уровней нет. Оба приема - скользящая средняя и средние уровни по частям ряда - не свободны от субъективных факторов. Можно скользящую среднюю вычислять не за 5 лет, а за 6 или 7; можно иначе разбить ряд на три части или на другое число частей.
Более обоснованным приемом выявления тренда является проверка статистической гипотезы о постоянстве того или иного показателя динамики [12 Прием предложен М. С. Каяйкиной в статье «Выбор типа линии при аналитическом выравнивании динамических рядов урожайности сельскохозяйственных культур» // Записки ЛСХИ, — Ленинград - Пушкин, 1972. -Т. 196.]
. Рассмотрим этот прием по данным табл. 9.4.





Таблица 9.4
Проверка гипотезы о линейном тренде индекса цен
(1990 г. = 100%)



В первую очередь проверяется гипотеза о наиболее простой - линейной форме уравнения тренда, т. е. о несущественности различий цепных абсолютных изменений. Имеем 12 абсолютных изменений скользящей средней, которая хотя и сгладила сильные колебания уровней ряда, но как видим, ее абсолютные изменения далеко не одинаковы. Разбиваем эти 12 цепных приростов на два подпериода: по 6 приростов в каждом, и для каждого подпериода вычисляем среднюю Д?k среднее квадрагическое отклонение (СКО) как оценку генерального СКО с учетом потери одной степени свободы вариации, s


и среднюю ошибку среднего изменения тДk по правилам, рассмотренным в главе 7:


Для проверки гипотезы о несущественности различий между средними абсолютными изменениями по подпериодам Д?1, Д?2. М. С. Каяйкина предложила проверять существенность их различий попарно по t-критерию Стьюдента. Затем методика была дополнена и усовершенствована А. И. Манеллей, предложившим проверять существенность всех различий сразу по критерию Фишера.
Средняя случайная ошибка разностей двух выборочных средних оценок, как показано в гл. 7, есть корень квадратный из суммы квадратов ошибок каждой из средних, т. е.


Критерий Стьюдента для существенности различия двух среднегодовых приростов (изменений) составит:

Критическое значение критерия при уровне значимости 0,05 и при (6-1) + (6-1) = 10 степенях свободы равно 2,23 (см. Приложение 2). Фактическое значение много меньше. Следовательно вероятность того, что различие среднегодовых приростов в разные под-периоды случайно, превышает 0,05 и гипотеза о равенстве приростов не отклоняется. А значит, тенденцию динамики на реем протяжении ряда можно считать линейной.
Если же гипотеза о линейности отклоняется, по скользящим средним и их цепным приростам вычисляют ускорения приростов и аналогичным методом проверяют существенность различия ускорения в подпериодах. Если несущественно различиеускорений, принимается гипотеза о том, что тренд - парабола II порядка. Если и гипотеза о постоянстве ускорений отклоняется, то по скользящей средней вычисляют цепные темпы роста и проверяют гипотезу об их постоянстве по подпериодам. Подтверждение (неотклонение) этой гипотезы означает принятие гипотезы о том, что тренд экспоненциальный.
Проверка гипотез о других типах тенденций динамики, рассмотренных в п. 9.4, сложнее и здесь излагаться не будет. Итак, в нашем примере принято решение считать тренд линейным, и следует приступить к вычислению его параметров.

9.6. Методика измерения параметров тренда

Когда тип тренда установлен, необходимо вычислить оптимальные значения параметров тренда исходя из фактических уровней. Для этого обычно используют метод наименьших квадратов (МНК). Его значение уже рассмотрено в предыдущих главах учебного пособия, в данном случае оптимизация состоит в минимизации суммы квадратов отклонений фактических уровней ряда от выравненных уровней (от тренда). Для каждого типа тренда МНК дает систему нормальных уравнений, решая которую вычисляют параметры тренда. Рассмотрим лишь три такие системы: для прямой, для параболы 2-го порядка и для экспоненты. Приемы определения параметров других типов тренда рассматриваются в специальной монографической литературе.
Для линейного тренда нормальные уравнения МНК имеют вид:





Нормальные уравнения МНК для экспоненты имеют следующий вид:


По данным табл. 9.1 рассчитаем все три перечисленных тренда для динамического ряда урожайности картофеля с целью их сравнения (см. табл. 9.5).





Таблица 9.5
Расчет параметров трендов



Согласно формуле (9.29) параметры линейного тренда равны а = 1894/11 = 172,2 ц/га; b = 486/110 = 4,418 ц/га. Уравнение линейного тренда имеет вид:
у? = 172,2 + 4,418t, где t = 0 в 1987 г Это означает,что средний фактический и выравненный уровень, отнесенный к середине периода, т.е. к 1991 г., равен 172 ц с 1 ra a среднегодовой прирост составляет 4,418 ц/га в год
Параметры параболического тренда согласно (9.23) равны- b = 4,418; a = 177,75; с = -0,5571. Уравнение параболического тренда имеет вид уЮ = 177,75 + 4,418t - 0.5571t2; t = 0 в 1991 г. Это означает, что абсолютный прирост урожайности замедляется в среднем на 2·0,56 ц/га в год за год. Сам же абсолютный прирост уже не является константой параболического тренда, а является средней величиной за период. В год, принятый за начало отсчета т.е. 1991 г., тренд проходит через точку с ординатой 77,75 ц/га; Свободный член параболического тренда не является средним уровнем за период. Параметры экспоненциального тренда вычисляются по формулам(9.32) и (9.33) lnа = 56,5658/11 = 5,1423; потенцируя, получаем а = 171,1; lnk = 2,853:110 = 0,025936; потенцируя, получаем k = 1,02628.
Уравнение экспоненциального тренда имеет вид: y? = 171,1·1,02628t.
Это означает, что среднегодовой темп поста урожайности за период составил 102,63%. В точке принятК начало отсчета, тренд проходит точку с ординатой 171,1 ц/га.
Рассчитанные по уравнениям трендов уровни записаны в трех последних графах табл. 9.5. Как видно по этим данным. расчетные значения уровней по всем трем видам трендов различаются ненамного, так как и ускорение параболы, и темп роста экспоненты невелики. Существенное отличие имеет парабола - рост уровней с 1995 г. прекращается, в то время как при линейном тренде уровни растут и далее, а при экспоненте их ост ускоряется. Поэтому для прогнозов на будущее эти три тренда неравноправны: при экстраполяции параболы на будущие годы уровни резко разойдутся с прямой и экспонентой, что видно из табл. 9.6. В этой таблице представлена распечатка решения на ПЭВМ по программе «Statgraphics» тех же трех трендов. Отличие их свободных членов от приведенных выше объясняется тем, что программа нумерует года не от середины, а от начала, так что свободные члены трендов относятся к 1986 г., для которого t = 0. Уравнение экспоненты на распечатке оставлено в логарифмированном виде. Прогноз сделан на 5 лет вперед, т.е. до 2001 г.. При изменении начала координат (отсчета времени) в уравнении параболы меняется и средний абсолютной прирост, параметр b. так как в результате отрицательного ускорения прирост все время сокращается, а его максимум - в начале периода. Константой параболы является только ускорение.



В строке «Data» приводятся уровни исходного ряда; «Forecast summary» означает сводные данные для прогноза. В следующих строках - уравнения прямой, параболы, экспоненты - в логарифмическом виде. Графа ME означает среднее расхождение между уровнями исходного ряда и уровнями тренда (выравненными). Для прямой и параболы это расхождение всегда равно нулю. Уровни экспоненты в среднем на 0,48852 ниже уровней исходного ряда. Точное совпадение возможно,, если истинный тренд - экспонента; в данном случае совпадения нет, но различие , мало. Графа МАЕ -это дисперсия s2 - мера колеблемости фактических уровней относительно тренда, о чем сказано в п. 9.7. Графа МАЕ - среднее линейное отклонение уровней от тренда по модулю (см. параграф 5.8); графа МАРЕ - относительное линейное отклонение в процентах. Здесь они приведены как показатели пригодности выбранного вида тренда. Меньшую дисперсию и модуль отклонения имеет парабола: она за период 1986 - 1996 гг. ближе к фактическим уровням. Но выбор типа тренда нельзя сводить лишь к этому критерию. На самом деле замедление прироста есть результат большого отрицательного отклонения, т. е. неурожая в 1996 г.
Вторая половина таблицы - это прогноз уровней урожайности по трем видам трендов на годы; t = 12, 13, 14, 15 и 16 от начала отсчета (1986 г.). Прогнозируемые уровни по экспоненте вплоть до 16-го года ненамного выше,.чем по прямой. Уровни тренда-параболы - снижаются, все более расходясь с другими трендами.
Как видно в табл. 9.4, при вычислении параметров тренда уровни исходного ряда входят с разными весами - значениями tp и их квадратов. Поэтому влияние колебаний уровней на параметры тренда зависит от того, на какой номер года приходится урожайный либо неурожайный год. Если резкое отклонение приходится на год с нулевым номером (ti = 0), то оно никакого влияния на параметры тренда не окажет, а если попадет на начало и конец ряда, то повлияет сильно. Следовательно, однократное аналитическое выравнивание неполно освобождает параметры тренда от влияния колеблемости, и при сильных колебаниях они могут быть сильно искажены, что в нашем примере случилось с параболой. Для дальнейшего исключения искажающего влияния колебаний на параметры тренда следует применить метод многократного скользящего выравнивания.
Этот прием состоит в том, что параметры тренда вычисляются не сразу по всему ряду, а скользящим методом, сначала за первые т периодов времени или моментов, затем за период от 2-го до т + 1, от 3-го до (т + 2)-го уровня и т.п. Если число исходных уровней ряда равно п, а длина каждой скользящей базы расчета параметров равна т, то число таких скользящих баз t или отдельных значений параметров, которые будут по ним определены, составит:
L = п + 1 - т.
Применение методики скользящего многократного выравнивания рассматривать, как видно из приведенных расчетов, возможно только при достаточно большом числе уровней ряда, как правило 15 и более. Рассмотрим эту методику на примере данных табл. 9.4 -динамики цен на нетопливные товары развивающихся стран, что опять же дает возможность читателю участвовать в небольшом научном исследовании. На этом же примере продолжим и методику прогнозирования в разделе 9.10.
Если вычислять в нашем ряду параметры по 11 -летним периодам (по 11 уровням), то t = 17 + 1 - 11 = 7. Смысл многократного скользящего выравнивания в том, что при последовательных сдвигах базы расчета параметров на концах ее и в середине окажутся разные уровни с разными по знаку и величине отклонениями от тренда. Поэтому при одних сдвигах базы параметры будут завышаться, при других - занижаться, а при последующем усреднении значений параметров по всем сдвигам базы расчета произойдет дальнейшее взаимопогашение искажений параметров тренда колебаниями уровней.
Многократное скользящее выравнивание не только позволяет получить более точную и надежную оценку параметров тренда, но и осуществить контроль правильности выбора типа уравнения тренда. Если окажется, что ведущий параметр тренда, его константа при расчете по скользящим базам не беспорядочно колеблется, а систематически изменяет свою величину существенным образом, значит, тип тренда был выбран неверно, данный параметр константой не является.
Что касается свободного члена при многократном выравнивании, то нет необходимости и, более того, просто неверно вычислять его величину как среднюю по всем сдвигам базы, ибо при таком способе отдельные уровни исходного ряда входили бы в расчет средней с разными весами, и сумма выравненных уровней разошлась бы с суммой членов исходного ряда. Свободный член тренда - это средняя величина уровня за период, при условии отсчета времени от середины периода. При отсчете от начала, если первый уровень ti = 1, свободный член будет равен: a0 = у? - b((N-1)/2). Рекомендуется длину скользящей базы расчета параметров тренда выбирать не менее 9-11 уровней, чтобы в достаточной мере погасить колебания уровней. Если исходный ряд очень длинный, база может составлять до 0,7 - 0,8 его длины. Для устранения влияния долго-периодических (циклических) колебаний на параметры тренда, число сдвигов базы должно быть равно или кратно длине цикла колебаний. Тогда начало и конец базы будут последовательно «пробегать» все фазы цикла и при усреднении параметра по всем сдвигам его искажения от циклических колебаний будут взаимопогашаться. Другой способ - взять длину скользящей базы, равной длине цикла, чтобы начало базы и конец базы всегда приходились на одну и ту же фазу цикла колебаний.
Поскольку по данным табл. 9.4, уже было установлено, что тренд имеет линейную форму, проводим расчет среднегодового абсолютного прироста, т. е. параметра b уравнения линейного тренда скользящим способом по 11-летним базам (см. табл. 9.7). В ней же приведен расчет данных, необходимых для последующего изучения колеблемости в параграфе 9.7. Остановимся подробнее на методике многократного выравнивания по скользящим базам. Рассчитаем параметр b по всем базам:







Табл и ца 9.7

Многократное скользящее выравнивание по прямой






Уравнение тренда: у? = 104,53 - 1,433t; t = 0 в 1987 г. Итак, индекс цен в среднем за год снижался на 1,433 пункта. Однократное выравнивание по всем 17 уровням может исказить этот параметр, ибо начальный уровень содержит значительное отрицательное отклонение, а конечный уровень - положительное. В самом деле, однократное выравнивание дает величину среднегодового изменения индекса всего на 0,953 пункта.

9.7. Методика изучения и показатели
колеблемости

Если при изучении и измерении тенденции динамики колебания уровней играли лишь роль помех, «информационного шума», от которого следовало по возможности абстрагироваться, то в дальнейшем сама колеблемость становится предметом статистического исследования. Значение изучения колебаний уровней динамического ряда очевидно: колебания урожайности, продуктивности скота, производства мяса экономически нежелательны, так как потребность в продукции агрокомплекса постоянна. Эти колебания следует уменьшать, применяя прогрессивную технологию и другие меры. Напротив, сезонные колебания объемов производства зимней и летней обуви, одежды, мороженого, зонтиков, коньков - необходимы и закономерны, так как спрос на эти товары тоже колеблется по сезонам и равномерное производство требует лишних затрат на хранение запасов. Регулирование рыночной экономики как со стороны государства, так и производителей в значительной мере состоит в регулировании колебаний экономических процессов.
Типы колебаний статистических показателей весьма разнообразны, но все же можно выделить три основных: пилообразную или маятниковую колеблемость, циклическую долгопериодическую и случайно распределенную во времени колеблемость. Их свойства и отличия друг от друга хорошо видны при графическом изображении рис. 9.2.
Пилообразная или маятниковая колеблемость состоит в попеременных отклонениях уровней от тренда в одну и в другую сторону. Таковы автоколебания маятника. Такие автоколебания можно наблюдать в динамике урожайности при невысоком уровне агротехники: высокий урожай при благоприятных условиях погоды выносит из почвы больше питательных веществ, чем их образуется естественным путем за год; почва обедняется, что вызывает снижение следу- ющего урожая ниже тренда, он выносит меньше питательных веществ, чем образуется за год, плодородие возрастает и т.д.



Рис. 9.2. Виды колебаний

Циклическая долгопериодическая колеблемость свойственна, например, солнечной активности (10-11-летние циклы), а значит, и связанным с ней на Земле процессам - полярным сияниям, грозовой деятельности, урожайности отдельных культур в ряде районов, некоторым заболеваниям людей, растений. Для этого типа характерны редкая смена знаков отклонений от тренда и кумулятивный (накапливающийся) эффект отклонений одного знака, который может тяжело отражаться на экономике. Зато колебания хорошо прогнозируются.
Случайно распределенная во времени колеблемость - нерегулярная, хаотическая. Она может возникать при наложении (интерференции) множества колебаний с разными по длительности циклами. Но может возникать в результате столь же хаотической колеблемости главной причины существования колебаний, например суммы осадков за летний период, температуры воздуха в среднем за месяц в разные годы.
Для определения типа колебаний применяются графическое изображение, метод «поворотных точек» М. Кендэла, вычисление коэффициентов автокорреляции отклонений от тренда. Эти методы будут рассмотрены далее.
Основными показателями, характеризующими силу колеблемости уровней, выступают уже известные по главе 5 показатели, характеризующие вариацию значений признака в пространственной совокупности. Однако вариация в пространстве и колеблемость во времени принципиально различны. Прежде всего различны их основные причины. Вариация значений признака у одновременно существующих единиц возникает из-за различий в условиях существования единиц совокупности. Например, разная урожайность картофеля в совхозах области в 1990 г. вызвана различиями в плодородии почв, в качестве семян, в агротехнике. А вот суммы эффективных температур за вегетационный период и осадков не являются причинами пространственной вариации, так как в одном и том же году на территории области эти факторы почти не варьируют. Напротив, главными причинами колебания урожайности картофеля в области за ряд лет как раз являются колебания метеорологических факторов, а качество почв колебаний почти не имеет. Что же касается общего прогресса агротехники, то он является причиной тренда, но не колеблемости.
Второе коренное отличие состоит в том, что значения варьирующего признака в пространственной совокупности можно считать в основном не зависимыми друг от друга, напротив, уровни динамического ряда, как правило, являются зависимыми: это показатели развивающегося процесса, каждая стадия которого связана с предыдущими состояниями.
В-третьих, вариация в пространственной совокупности измеряется отклонениями индивидуальных значений признака от среднего значения, а колеблемость уровней динамического ряда измеряется не их отличиями от среднего уровня (эти отличия включают и тренд, и колебания), а отклонениями уровней от тренда.
Поэтому лучше использовать разные термины: различия признака в пространственной совокупности называть только вариацией, но не колебаниями: никто же не станет называть различия численности населения Москвы, Петербурга, Киева и Ташкента «колебаниями числа жителей»! Отклонения уровней динамического ряда от тренда будем называть всегда колеблемостью. Колебания всегда происходят во времени, не может существовать колебаний вне времени, в фиксированный момент.
На основе качественного содержания понятия колеблемости строится и система ее показателей. Показателями силы колебании уровней являются: амплитуда отклонений уровней отдельных периодов или моментов от тренда (по модулю), среднее абсолютное отклонение уровней от тренда (по модулю), среднее квадратическое откло;-нение уровней от тренда. Относительные меры колеблемости: относительное линейное отклонение от тренда и коэффициент колеблемости - аналог коэффициента вариации.
Особенностью методики вычисления средних отклонений от тренда является необходимость учета потерь степеней свободы колебаний на величину, равную числу параметров уравнения тренда. Например, прямая линия имеет два параметра, и, как известно из геометрии, через любые две точки можно провести прямую линию. Значит, имея лишь два уровня, мы проведем линию тренда точно через эти два уровня, и никаких отклонений уровней от тренда не окажется, хотя на самом деле и эти два уровня включали колебания, не были свободны от действия факторов колеблемости. Парабола второго порядка пройдет точно через любые три точки и т.п.
Учитывая потерю степеней свободы, основные абсолютные показатели колеблемости вычисляются по формулам (9.34) и (9.35):
среднее линейное отклонение

(9.34)

среднее квадратичное отклонение

(9.35)

где yi - фактический уровень;
y?i - выравненный уровень, тренд;
n - число уровней;
р - число параметров тренда.

Знак времени «t» в скобках после показателя означает, что это показатель не обычной пространственной вариации, как в главе V, а показатель колеблемости во времени.
Относительные показатели колеблемости вычисляются делением абсолютных показателей на средний уровень за весь изучаемый период. Расчет показателей колеблемости проведем по результатам анализа динамики индекса цен (см. табл. 9.7). Тренд примем по результатам многократного скользящего выравнивания, т. е. у? = 104,53 - 1,433t ; t = 0 в 1987 г.
1. Амплитуда колебаний составила от -14,0 в 1986 г. до +15,2 в 1984 г., т.е. 29,2 пункта.
2. Среднее линейное отклонение по модулю найдем, сложив модули |ui| (их сумма равна 132,3), и разделив на (п - р), согласно формуле (9.34):
=8,82 пункта.
3. Среднее квадратическое отклонение уровней от тренда по формуле (9.35) составило:
= 9,45 пункта.
Небольшое превышение среднего квадратического отклонения над линейным указывает на отсутствие среди отклонений резко выделяющихся по абсолютной величине.
4. Коэффициент колеблемости: или 9,04%. Колеблемость умеренная, не сильная. Для сравнения приводим показатели (без расчета) по колебаниям урожайности картофеля, данные таблиц 9.1 и 9.5 - отклонение от линейного тренда:
s(t) = 14,38 ц с 1 га, v(t) = 8,35%.
Для выявления типа колебаний воспользуемся приемом, предложенным М. Кендэлом. Он состоит в подсчете так называемых «поворотных точек» в ряду отклонений от тренда иi т. е. локальных экстремумов. Отклонение, либо большее по алгебраической величине, либо меньшее двух соседних, отмечается точкой. Обратимся к рис. 9.2. При маятниковой колеблемости все отклонения, кроме двух крайних, будут «поворотными», следовательно, их число составит п -1. При долгопериодических циклах на цикл приходятся один минимум и один максимум, а общее число точек составит 2(n:l), где l - длительность цикла. При случайно распределенной во времени колеблемости, как доказал М. Кендэл, число поворотных точек в среднем составит: 2/3 (n - 2). В нашем примере при маятниковой колеблемости было бы 15 точек, при связанной с 11-летним циклом было бы 2-(17 : 11) ? 3 точки, при случайно распределенной во времени в среднем было бы (2/3)·(17-2) =10 точек.
Фактическое число точек 6 выходит за границы двукратного среднего квадратического отклонения числа поворотных точек, которое по Кендэлу равно * [* Юл. Дж. Э. Кендэл М. Теория статистики. - М.: Госстатиздат, 1960. -С. 708.]
, в нашем случае .
Наличие 6 точек, при 2 точках за цикл, означает, что в ряду могут быть примерно 3 цикла, продолжительность периода которых 5,5 - 6 лет. Возможно сочетание таких циклических колебаний со случайными.
Другой метод анализа типа колеблемости и поиска длины цикла основан на вычислении коэффициентов автокорреляции отклонений от тренда.
Автокорреляция - это корреляция между уровнями ряда или отклонениями от тренда, взятыми со сдвигом во времени: на 1 период (год), на 2, на 3 и т. д., поэтому говорят о коэффициентах автокорреляции разных порядков: первого, второго и т. д. Рассмотрим сначала коэффициент автокорреляции отклонений от тренда первого порядка.
Одна из основных формул для расчета коэффициента автокорреляции отклонений от тренда имеет вид:

(9.36)

Как легко видеть по табл. 9.7, первое и последнее в ряду отклонения участвуют только в одном произведении в числителе, а все прочие отклонения от второго до (п - 1)-го - в двух. Поэтому и в знаменателе квадраты первого и последнего отклонений следует взять с половинным весом, как в хронологической средней. По данным табл. 9.7 имеем:


Теперь обратимся к рис. 9.2. При маятниковой колеблемости все произведения в числителе будут отрицательными величинами, и коэффициент автокорреляции первого порядка будет близок к -1. При долголериодических циклах будут преобладать положительные произведения соседних отклонений, а смена знака происходит лишь дважды за цикл. Чем длиннее Цикл, тем больше перевес положительных произведений в числителе, и коэффициент автокорреляции первого порядка ближе к +1. При случайно распределенной во времени колеблемости знаки отклонений чередуются хаотически, число положительных произведений близко к числу отрицательных, ввиду чего коэффициент автокорреляции близок к нулю. Полученное значение говорит о наличии как случайно распределенных во времени колебаний, так и циклических. Коэффициенты автокорреляции следующих порядков: II = - 0,577; Ш = -0,611; IV == -0,095; V = +0,376; VI = +0,404; VII = +0,044. Следовательно, противофаза цикла ближе всего кЗ годам (наибольший отрицательный коэффициент при сдвиге на 3 года), а совпадающие фазы ближе к б годам, что и дает длину цикла колебаний. Эти максимальные по абсолютной величине коэффициенты не близки к единице. Это означает, что циклическая колеблемость смешана со значительной случайной колеблемостью. Таким образом, подробный автокорреляционный анализ в целом дал те же результаты, что и выводы по автокорреляции первого порядка.
Если динамический ряд достаточно длинен, можно поставить и решить задачу об изменении показателей колеблемости с течением времени. Для этого рассчитывают эти показатели по подпериодам, но длительностью не менее 9-11 лет, иначе измерения колеблемости ненадежны. Кроме того, можно рассчитывать показатели колеблемости скользящим способом, а затем произвести их выравнивание, т. е. вычислить тренд показателей колеблемости. Это полезно, чтобы сделать вывод о действенности мер, применявшихся для уменьшения колебаний урожайности и других нежелательных колебаний, а также для того, чтобы по тренду сделать прогноз ожидаемых в будущем размеров колебаний.

9.8. Измерение устойчивости в динамике

Понятие «устойчивость» используется в весьма различных смыслах. По отношению к статистическому изучению динамики мы рассмотрим два аспекта этого понятия: 1) устойчивость как категория, противоположная колеблемости; 2) устойчивость направленности изменений, т. е. устойчивость тенденции.
В первом понимании показатель устойчивости, который может быть только относительным, должен изменяться от нуля до единицы (100%). Это разность между единицей и относительным показателем колеблемости. Коэффициент колеблемости составил 9,0%. Следовательно, коэффициент устойчивости равен 100% - 9,0% = 91,0%. Этот показатель характеризует близость фактических уровней к тренду и совершенно не зависит от характера последнего. Слабая колеблемость и высокая устойчивость уровней в данном смысле могут существовать даже при полном застое в развитии, когда тренд выражен горизонтальной прямой.
Устойчивость во втором смысле характеризует не сами по себе уровни, а процесс их направленного изменения. Можно узнать, например, насколько устойчив процесс сокращения удельных затрат ресурсов на производство единицы продукции, является ли устойчивой тенденция снижения детской смертности и т. д. С этой точки зрения полной устойчивостью направленного изменения уровней динамического ряда следует считать такое изменение, в процессе которого каждый следующий уровень либо выше всех предшествующих (устойчивый рост), либо ниже всех предшествующих (устойчивое снижение). Всякое нарушение строго ранжированной последовательности уровней свидетельствует о неполной устойчивости изменений.
Из определения понятия устойчивости тенденции вытекает и метод построения ее показателя. В качестве показателя устойчивости можно использовать коэффициент корреляции рангов Ч. Спирмэна (Spearman) - rx.


где п — число уровней;
Дi - разность рангов уровней и номеров периодов времени.

При полном совпадении рангов уровней, начиная с наименьшего, и номеров периодов (моментов) времени по их хронологическому порядку коэффициент корреляции рангов равен +1. Это значение соответствует случаю полной устойчивости возрастания уровней. При полной противоположности рангов уровней рангам лет коэффициент Спирмэна равен -1, что означает полную устойчивость процесса сокращения уровней. При хаотическом чередовании рангов уровней коэффициент близок к нулю, это означает неустойчивость какой-либо тенденции. Приведем расчет коэффициента корреляции Спирмэна по данным о динамике индекса цен (табл. 9.7) в табл. 9.8.

Таблица 9.8
Расчет коэффициентов корреляции рангов Спирмена

Годы
Уровни,
yi
Ранг лет, Рx
Ранг уровней, Ру

Рx-Рy

(Px -Py)2
1979
105
1
8
7
49
1980
111
2
13
11
121
1981
110
3 •
12
9
81
1982
106
4
9,5
5,5
30,25
1983
118
5
16
11
121
1984
124
6
17
11
121
1985
113
7
14,5
7,5
56,25
1986
92
8
3,5
4,5
20,25
1987
91
9
1,5
7,5
56,25
1988
109
10
11
1
1
1989
113
11
14.5
3,5
12,25
1990
100
12
6
6
36
1991

<< Пред. стр.

страница 18
(всего 32)

ОГЛАВЛЕНИЕ

След. стр. >>

Copyright © Design by: Sunlight webdesign