LINEBURG


<< Пред. стр.

страница 17
(всего 32)

ОГЛАВЛЕНИЕ

След. стр. >>

y? = 3,886x1 – 243,2

Условно-чистый коэффициент регрессии при x1, составляет только 58% парного. Остальные 42% связаны с тем, что вариации x1 сопутствует вариация факторов x2 x3, которая, в свою очередь, влияет на результативный признака. Связи всех признаков и их коэффициенты парных регрессий представлены на графе связей (рис. 8.2).



Если сложить оценки прямого и опосредованного влияния вариации х1 на у, т. е. произведения коэффициентов парных регрессий по всем «путям» (рис. 8.2), получим: 2,26 + 12,55·0,166 + (-0,00128)·(-4,31) + (-0,00128)·17,00·0,166 = 4,344.
Эта величина даже больше парного коэффициента связи x1 с у. Следовательно, косвенное влияние вариации x1 через не входящие в уравнение признаки-факторы - обратное, дающее в сумме:
3,886 - 4,344 = - 0,458.

8.12. Меры тесноты связей в многофакторной
системе

Многофакторная система требует уже не одного, а множества показателей тесноты связей, имеющих разный смысл и применение. Основой измерения связей является матрица парных коэффициентов корреляции (табл. 8.10).
Таблица 8.10
Матрица парных коэффициентов корреляции



По этой матрице можно судить о тесноте связи факторов с результативным признаком и между собой. Хотя все эти показатели относятся к парным связям, все же матрицу можно использовать для предварительного отбора факторов для включения в уравнение регрессии. Не рекомендуется включать в уравнение факторы слабо связанные с результативными признаками, но тесно связанные с другими факторами. Если, например, имеем: rxy1 = 0,8; rxy2 = 0,65;
rx1x2 = 0,88, то в регрессионное уравнение следует включить фактор x1, а фактор х2 не включать, так как он тесно связан с х1 (коллинеарен с x1), и его корреляция с у слабее, чем корреляция фактора x1. Совершенно недопустимо включать в анализ факторы, функционально связанные друг с другом, т. е. с коэффициентом корреляции, равным единице. Включение таких пар признаков приводит к вырожденной матрице коэффициентов и неопределенности решения. В этом случае решение задачи на ПЭВМ прекращается.
Матрица парных коэффициентов для нашего примера (табл. 8.11) говорит об отсутствии коллинеарных (т. е. линейно связанных) факторов, что позволяет включить все эти факторы в уравнении регрессии.
На основе этой матрицы вычисляется наиболее общий показатель тесноты связи всех входящих в уравнение регрессии факторов
Таблица 8.11
Матрица парных коэффициентов корреляции


Этим способом можно определить величину R2 не вычисляя расчетных значений результативного признака у?i для всех единиц совокупности. Если полученная величина R2 не удовлетворяет исследоветеля, то можно прекратить дальнейшие вычисления и не рассчитывать у?i (это имеет значение, если совокупность состоит из сотен и тысяч единиц).
Принципиальное содержание множественного коэффициента детерминации, как и парного, раскрывается формулой (8.2). Jmo отношение части вариации результативного признака, объясняемой за счет вариации входящих в уравнение факторов, к общей вариации результативного признака за счет всех факторов, здесь под «вариацией» понимается сумма квадратов отклонении индивидуальных расчетных по уравнению величин от средней («объясненная вариация») и первичных индивидуальных величин от средней («общая вариация»).
В нашем примере значение сумм квадратов отклонений и коэффициенты детерминации и корреляции приведены по распечатке программы «Microstat» в табл. 8.12.
Таблица 8.12
Показатели множественной корреляционной связи



Верхняя строка: корректированный R-квадрат = 0,872390; вторая строка: R-квадрат = 0,897912; третья строка: множественный R = 0,947582. Затем приводится таблица дисперсионного анализа, в которой указываются источники вариации: объясненная сумма квадратов отклонений значений, рассчитанных по уравнению регрессии, от среднего значения Dост = S(y?i - y?)2 = 662 772,98 при числе степеней свободы, равном числу объясняющих переменных dfk = 3; остаточная - отклонения фактических значений от расчетных Dост = S(y?i - y?)2 = 75353,96 при числе степеней свободы, равном df=n-k-1, df=12; общая - S(y?i - y?)2 =738 126,94, при числе степеней свободы df = п –k - 1, df = 15. Затем приводится средний квадрат отклонений: s21 = Dобъясн : dfобъясн = 662772,98 : 3 = 220924,3;
Ы22 =Dост : dfост = 75353,96 : 12 = 6279,5. Далее указано их отношение, т. е.
s21/s22 = F-критерию. Наконец, указывается вероятность ошибочного решения, т. е. нулевого R2, равная 0,000003171.
Три фактора, включенные в уравнение регрессии, объясняют 89,8% вариации уровня валового дохода, если рассматривать 16 хозяйств как генеральную совокупность, не считаясь с ее ограниченной численностью (некорректированный коэффициент детерминации равен 0,8979). Если же учесть конечность объема совокупности п, число факторов k, а также свойство метода, по которому по мере приближения числа k к числу п коэффициент детерминации автоматически приближается к единице и достигает ее при k = п - 1 независимо от реальной роли факторов, то необходимо корректировать коэффициент множественной детерминации на потерю степеней свободы вариации:



Корректированный коэффициент детерминации всегда ниже, чем некорректированный, причем разность их значений тем меньше, чем меньше факторов входит в уравнение регрессии. Если из числа факторов исключить факторы, слабо связанные с результативным признаком (т. е. с низким значением вj, например, в < 0,1), то некорректированный коэффициент детерминации немного уменьшится (он всегда уменьшается при исключении части факторов), но корректированный коэффициент может даже возрасти за счет уменьшения разности между R2 и корректированным R2. Что касается множественного коэффициента корреляции R, то программа «Microstat» рассчитывает его, как корень квадратный из некорректированного R2, а другие программы, например «Statgraphics», - как корень квадратный из R2корр.
Для случая двух факторов коэффициент множественной детерминации легко вычисляется по рекуррентной формуле из парных коэффициентов детерминации:

Используя матрицу парных коэффициентов корреляции (табл. 8.11), получим:


Таким образом, за счет вариации факторов x1 и х2 объясняется 57,65% общей вариации валового дохода с 1 га сельхозугодий.
Вернемся к табл. 8.12. Дисперсионный анализ системы связей предназначен для оценки того, насколько надежно доказывают исходные данные наличие связи результативного признака со всеми факторами, входящими в уравнение. Для этого сравниваются дисперсии у - объясненная и остаточная: суммы соответствующих квадратов отклонений, приходящиеся на одну степень свободы вариации. Отношение дисперсии за счет факторов к остаточной дисперсии есть критерий Фишера F; в нашем примере он равен 35,18. Табличное критическое значение для 3 и 12 степеней свободы при вероятности нулевой гипотезы 0,01 составляет 5,95. Следовательно, вероятность нулевой гипотезы много меньше 0,01. Программа «Microstat» дает значение вероятности нулевой гипотезы, т. е. вероятность случайного отклонения от нуля коэффициента детерминации при отсутствии связи в генеральной совокупности; она равна 3,17·10-6, т. е. три миллионных! Ясно, что эту ничтожную вероятность можно игнорировать и сделать вывод, что имеющаяся информация надежно свидетельствует о наличии связи.
Кроме показателя общей тесноты связи вариации результативного признака со всеми факторами, входящими в регрессионное уравнение, необходимы и показатели, измеряющие тесноту связи с каждым фактором. К таким показателям относятся коэффициенты раздельной детерминации.
Коэффициентом раздельной детерминации, обозначаемым далее как d2j, называется произведение парного коэффициента корреляции фактора хj на его в-коэффициент.

Формула (8.39) дает еще один метод вычисления коэффициента множественной детерминации, используемый в некоторых программах для ЭВМ. В нашем примере получаем следующие значения коэффициентов раздельной детерминации:


Таким образом, за счет вариации x1 объясняется 24,2% вариации, за счет вариации х2 - всего 7,3%; за счет вариации x3 - более половины - 583% вариации уровня дохода. Сумма коэффициентов раздельной детерминации равна некорректированному коэффициенту R2.
Недостатком коэффициентов раздельной детерминации является их гетерогенный характер: то, что они объединяют коэффициент парной корреляции, измеряющий нечистое влияние фактора, с в-коэффициентом, измеряющим условно чистое влияние фактора, абстрагированное от влияния других факторов, входящих в уравнение связи. Из-за этого могут возникнуть неинтерпретируемые отрицательные величины коэффициентов d2j, если знаки парного коэффициента корреляции и в-коэффициента не совпадают при существенной взаимосвязи между факторами. Кроме того, сама идея о том, что совокупное влияние всех факторов равно сумме влияния каждого из них, противоречит системному подходу к исследованию.
Рассмотрим разложение R2 с учетом системного эффекта. Система факторов - это не простая их сумма, так как система предполагает внутренние связи, взаимодействие составляющих ее элементов. Действие системы не равно сумме воздействий составляющих ее элементов. К последним добавляется «системный эффект» «Emergency». Методом, полностью отвечающим системному подходу, является метод разложения коэффициента множественной детерминации на сумму чистых влияний каждого фактора, выражаемых величинами в21, и показатель влияния системного эффекта факторов зx.
Так как расчетные значения результативного признака у?j можно представить как , то вариацию уЮj1 только за счет влияния фактора xm можно представить при условии, что все остальные факторы, входящие в уравнение, закреплены на своих средних уровнях:
. (8.40)

Подставим в (8.40) значение фактора xm-1 = xm +Dxm1 :



Теперь измерим сумму квадратов отклонений у только за счет вариации признака хm.
(8.41)

Мерой вариации результативного признака за счет изолированного влияния вариации фактора xm является доля объясняемой этим влиянием вариации у. Соответственно получаем:


Сумма изолированных долей влияния каждого фактора в отдельности на вариацию у есть , a системный эффект
(8.42)
Проведем разложение коэффициента множественной детерминации по данным нашего примера:
за счет вариации x1 : в21, = 0,35222 = 0,1239, или 12,39%;
за счет вариации x2 : в22 = (-0.206)2 = 0,0424, или 4,24%;
за счет вариации x3 : в23, = 0,6642 = 0,4409, или 44,09%.
Суммарное влияние трех факторов составило =60,72% системный эффект:
= 0,8979 - 0,6072 = 0,2907, или 29,07%.
Как видим, роль системного эффекта связей между факторами довольно велика: он на втором месте после влияния третьего фактора.
Системный эффект может, в свою очередь, быть разложен на влияние ковариации каждой пары факторов или на влияние совместной вариации отдельных групп факторов, если число последних велико. Если исследователь все же желает отказаться от выделения системного эффекта, свести коэффициент множественной детерминации к сумме по отдельным факторам, можно разделить величину П, пропорционально величине в2j.
Программы анализа связей на ЭВМ обычно предусматривают вычисление коэффициентов частной детерминации. Они приведены выше в последней графе табл. 8.8. Коэффициент частной детерминации фактора xm - это доля вариации у, дополнительно объясняемой при включении фактора xm после остальных факторов в уравнение регрессии, в величине вариации у, не объясненной ранее включенными факторами. Наиболее ясно суть частных коэффициентов детерминации выражается формулой их расчета через коэффициенты множественной детерминации. Частный коэффициент детерминации для фактора хm обозначим как
.
Тогда
. (8.43)

Здесь R2y - коэффициент детерминации для уравнения со всеми k факторами. Числитель (8.43) и есть дополнительно объясняемая часть вариации у при включении фактора хm в уравнение после всех остальных факторов. В нашем примере, используя ранее рассчитанную величину Ryx1x2 = 0,5765, при включении в анализ фактора x3 получаем:



Некоторое расхождение в четвертой значащей цифре с табл. 8.8 объясняется округлением промежуточных расчетных показателей.
Следует усвоить, что коэффициенты частной детерминации - это доли от разных величин, поэтому они несравнимы; по этим долям нельзя судить о роли факторов. Их главное практическое значение - определить, имеет ли смысл добавить в уравнение регрессии новый фактор или нет. Если при его включении ранее необъясненная вариация уменьшится на три четверти, как в примере при введении фактора х3, его включение оправдано; если же коэффициент частной детерминации мал, то дополнительный фактор включать не следует. Сумма частных коэффициентов детерминации смысла не имеет и растет с ростом числа факторов и ростом R2 без ограничения.
При последовательном вводе факторов в уравнение регрессии объясняемая часть вариации результативного признака возрастает с каждым новым фактором, вводимым в уравнение. При вводе последнего фактора эта часть достигает величины R2. Доли вариации у, объясняемые вводом каждого следующего фактора, и называют коэффициентами последовательной детерминации. Обозначим их как р2j. Для первого фактора этот коэффициент равен коэффициенту парной детерминации первого фактора, для второго - разности между коэффициентом детерминации при двух факторах и парным коэффициентом детерминации первого фактора и так далее. По данным нашего примера имеем:
= 0,6872 = 0,4720;
= 0,5765 - 0,4720 = 0,1045;
= 0,8979 - 0,5765 = 0,3214;


Однако крупнейшим недостатком такого способа разложения R2 является зависимость величин р2j от принятого порядка включения факторов в уравнение регрессии. Первый включаемый фактор «забирает в свою пользу» львиную часть системного эффекта, а на долю последнего фактора остается ничтожная часть. Например, если переставить местами факторы х1 и х3, а также вычислить по рекуррентной формуле двухфакторный коэффициент детерминации = 0,8035, то получим результаты, отличные от предыдущих:
p21 (для фактора х1) = = 0,8782 = 0,7709;
р22 (для фактора x2) = = 0,8035 - 0,7709 = 0,0326;
р23 (для фактора x3) = = 0,8979 - 0,8035 = 0,0944.
Доля фактора x3 возросла более чем вдвое, а доля фактора x1 уменьшилась более чем втрое.

8.13. Вероятностные оценки параметров
множественной регрессии и корреляции

Если показатели многофакторной системы связи используются как оценки генеральных параметров, экстраполируются на другие значения факторов, как при прогнозировании, то значения параметров необходимо сопроводить вероятностными оценками, указать среднюю ошибку и доверительные границы параметра с заданной. вероятностью. Для парной корреляции эта проблема изложена в п. 8.5. В этом параграфе приводятся формулы средних ошибок репрезентативности для специфических параметров многофакторной системы.
Средняя ошибка условно чистого коэффициента регрессии bp для фактора xp, обозначаемая mbp, имеет вид:

. (8.44)

где - оценка остаточного (не объясненного факторами) среднего квадратического отклонения результативного признака с учетом степеней свободы вариации:


,

где - оценка среднего квадратического отклонения при-знака xp.
- коэффициент множественной детерминации для фактора xp, доля вариации фактора xp, связанная с вариацией других факторов.

Например, для фактора x1, имеем:
=79,24.
= 34,6.
= 0,2433 - вычислен по рекуррентной формуле по данным табл. 8.11. Отсюда:


Отношение величины коэффициента регрессии к его средней ошибке есть t-критерий Стьюдента. В данном случае имеем: b1/mb1 = 2,26/0,6582 = 3,43. Критическое значение t для вероятности нулевой гипотезы 0,01 при 12 степенях свободы равно 3,05. Следовательно, надежно установлено, что генеральное значение коэффициента b1, не является нулевым, влияние (условно чистое) фактора x1, на вариацию у существенно.
Доверительные границы коэффициента регрессии b1, с вероятностью 0,95, для которой значение критерия Стьюдента равно 2,18, составляют 2,26 ± 2,18·0,658 или от 0,826 до 3,694.
Очень широкие границы объясняются малой численностью единиц совокупности. Из (8.44) следует, что при росте объема совокупности в q раз ошибка коэффициента регрессии, как и ошибка выборочной оценки средней величины, уменьшится в vq? раз. При 400 единицах совокупности ошибка была бы меньше в 5 раз.
Если значение критерия t оказывается ниже критического для вероятности нулевой гипотезы 0,05, влияние фактора считается не доказанным надежно, и при работе программ ЭВМ с отсевом несущественных факторов по t-критерию данный фактор автоматически исключается из уравнения регрессии.
Средняя ошибка оценки коэффициента множественной корреляции mR определяется по формуле
. (8.45)

Оценка существенности и расчет доверительных границ генерального коэффициента корреляции осуществляются так же, как и для коэффициента регрессии. Если значение R близко к единице, необходимо использовать преобразование Фишера, рассмотренное ранее в п. 8.2. Существуют также специальные таблицы критических значений коэффициента корреляции для заданного числа степеней свободы и вероятности нулевой гипотезы (см. приложение, табл. 5).

8.14. Корреляционно-регрессивные модели
(КРМ) и их применение в анализе и прогнозе

Корреляционно-регрессионной моделью системы взаимосвязанных признаков является такое уравнение регрессии, которое включает основные факторы, влияющие на вариацию результативного признака, обладает высоким (не ниже 0,5) коэффициентом детерминации и коэффициентами регрессии, интерпретируемыми, в соответствии с теоретическим знанием о природе связей в изучаемой системе.
Приведенное определение КРМ включает достаточно строгие условия: далеко не всякое уравнение регрессии можно считать моделью. В частности, полученное выше по 16 хозяйствам уравнение не отвечает последнему требованию из-за противоречащего экономике сельского хозяйства знака при факторе х2 - доля пашни. Однако в учебных целях используем его как модель.
Теория и практика выработали ряд рекомендаций для построения корреляционно-регрессионной модели.
1. Признаки-факторы должны находиться в причинной связи с результативным признаком (следствием). Поэтому, недопустимо, например, в модель себестоимости у вводить в качестве одного из факторов хj коэффициент рентабельности, хотя включение такого «фактора» значительно повышает коэффициент детерминации.
2. Признаки-факторы не должны быть составными частями результативного признака или его функциями, о чем уже сказано ранее.
3. Признаки-факторы не должны дублировать друг друга, т. е. быть коллинеарными (с коэффициентом корреляции более 0,8). Так, не следует в модель производительности труда включать и энерговооруженность рабочих, и их фондовооруженность, так как эти факторы тесно связаны друг с другом в большинстве объектов.
4. Не следует включать в модель факторы разных уровней иерархии, т. е. фактор ближайшего порядка и его субфакторы. Например, в моделях себестоимости зерна не следует включать и урожайность зерновых культур, и дозу удобрений под них или затраты на обработку гектара, показатели качества семян, плодородия почвы, т. е. субфакторы самой урожайности.
5. Желательно, чтобы между результативным признаком и факторами соблюдалось единство единицы совокупности, к которой они отнесены. Например, если у - валовой доход предприятия, то и все факторы должны относиться к предприятию: стоимость производственных фондов, уровень специализации, численность работников и т. д. Если же у - средняя зарплата рабочего на предприятии, то факторы должны относиться к рабочему: разряд или классность, стаж работы, возраст, уровень образования, энерговооруженность и т. д. Правило это не категорическое, в модель зарплаты рабочего можно включить, например и уровень специализации предприятия.
6. Математическая форма уравнения регрессии должна соответствовать логике связи факторов с результатом в реальном объекте. Например, такие факторы урожайности, как дозы разных удобрений, уровень плодородия, число прополок и т. п., создают прибавки величины урожайности, мало зависящие друг от друга; уро-

Первое слагаемое в правой части равенства - это отклонение, которое возникает за счет отличия индивидуальных значений факторов у данной единицы совокупности от их средних значений по совокупности. Его можно назвать эффектом факторообеспеченно-сти. Второе слагаемое - отклонение, которое возникает за счет не входящих в модель факторов и отличия индивидуальной эффективности факторов по данной единице совокупности от средней эффективности факторов в совокупности, измеряемой коэффициентами условно-чистой регрессии. Его можно назвать эффектом фа-тороотдачи.
Рассмотрим пример расчета и анализа отклонений по ранее построенной модели уровня валового дохода в 16 хозяйствах. Знаки тех и других отклонений 8 раз совпадают и 8 раз не совпадают. Коэффициент корреляции рангов отклонений двух видов составил 0,156. Это означает, что связь вариации факторообеспеченности с вариацией фактороотдачи слабая, несущественная (табл. 8.13).


Таблица 8.13
Анализ факторообеспеченности и фактороотдачи по
регрессионной модели уровня валового дохода



Обратим внимание на хозяйство № 15 с высокой факторообеспе-ченностью (15-е место) и самой худшей фактороотдачей (1-й ранг), из-за которой хозяйство недополучило по 122 руб. дохода с 1 га. Напротив, хозяйство № 5 имеет факторообеспеченность ниже средней, но благодаря более эффективному использованию факторов получило на 125 руб. дохода с 1 га больше, чем было бы получено при средней по совокупности эффективности факторов. Более высокая эффективность фактора х1 (затраты труда) может означать более высокую квалификацию работников, лучшую заинтересованность работников в качестве выполняемой работы. Более высокая эффективность фактора х3 с точки зрения доходности может состоять в высоком качестве молока (жирности, охлажденности), ввиду которого оно реализовано по более высоким ценам. Коэффициент регрессии при х2, как уже отмечено, экономически не обоснован.
Использование регрессионной модели для прогнозирования состоит в подстановке в уравнение регрессии ожидаемых значений факторных признаков для расчета точечного прогноза результативного признака или (и) его доверительного интервала с заданной вероятностью, как уже сказано в 8.2. Сформулированные там же ограничения прогнозирования по уравнению регрессии сохраняют свое значение и для многофакторных моделей. Кроме того, необходимо соблюдать системность между подставляемыми в модель значениями факторных признаков.
Формулы для расчета средних ошибок оценки положения гиперплоскости регрессии в заданной многомерной точке и для индивидуальной величины результативного признака весьма сложны, требуют применения матричной алгебры и здесь не рассматриваются. Средняя ошибка оценки значения результативного признака, рассчитанная по программе ПЭВМ «Microstat» и приведенная в табл. 8.8, равна 79,2 руб. на 1 га. Это лишь среднее квадратическое отклонение фактических значений дохода от расчетных по уравнению, не учитывающее ошибки положения самой гиперплоскости регрессии при экстраполяции значений факторных признаков. Поэтому ограничимся точечными прогнозами в нескольких вариантах (табл. 8.14).
Для сравнения прогнозов с базисным уровнем средних по совокупности значений признаков введена первая строка таблицы. Краткосрочный прогноз рассчитан на малые изменения факторов за короткое время и снижение трудообеспеченности.
Результат неблагоприятен, доход снижается. Долгосрочный прогноз А - «осторожный», он предполагает весьма умеренный прогресс факторов и соответственно небольшое увеличение дохода. Вариант Б - «оптимистический», рассчитан на существенное изменение факторов. Вариант № 5 построен по способу, которым Агафья Тихоновна в комедии Н. В. Гоголя «Женитьба» мысленно конструирует портрет «идеального жениха»: нос взять от одного претендента, подбородок от другого, рост от третьего, характер от четвертого... вот если бы соединить все нравящиеся ей качества в одном человеке, она бы не колеблясь вышла замуж... Так и при прогнозировании мы объединяем лучшие (с точки зрения модели дохода) наблюдаемые значения факторов: берем значение x1 от хозяйства № 10, значение x2 от хозяйства № 2, значение х3 от хозяйства №16. Все значения факторов уже существуют реально в изучаемой совокупности, они не «ожидаемые», не «взятые с потолка», это хорошо. Однако могут ли эти значения факторов сочетаться в одном предприятии, системны ли эти значения? Решение данного спорного вопроса выходит за рамки статистики, оно требует конкретных знаний об объекте прогнозирования.
Таблица 8.14
Прогнозы валового дохода по регрессионной модели

8.15. Измерение связи неколичественных
признаков

Корреляционно-регрессионный метод применим только к количественным признакам. Однако задача измерения связи ставится перед статистикой и по отношению к таким признакам, как пол, образование, занятие, семейное состояние человека, отрасль, форма собственности предприятия, т. е. признакам, не имеющим количественного выражения.
Учеными разных стран за последние сто лет разработано несколько методов измерения связей таких признаков. Отметим прежде всего уже рассмотренный ранее коэффициент корреляции рангов Спирмена, применимый и к количественным, и неколичественным, но поддающимся ранжированию признакам. Так, например, можно при помощи одной группы экспертов проранжировать кандидатов на занятие какой-либо должности по степени профессиональной подготовленности, а другую группу экспертов просить проранжировать тех же кандидатов по личностным и этическим качествам, а затем измерить связь между рангами.
Важным частным случаем задачи является измерение связи при альтернативной вариации двух признаков, один из которых имеет характер причины, а другой - следствия. Например, при социологическом обследовании 1000 жителей города были поставлены два вопроса: 1. Считаете ли вы, что ваши доходы позволяют обеспечивать удовлетворение основных потребностей? 2. Удовлетворяет ли вас деятельность мэра города? Можно предположить, что причиной отрицательного ответа на второй вопрос у части населения является неудовлетворенность их потребностей доходами, т.е. имеется связь между ответами на оба вопроса. Для измерения этой связи составляют двухмерное (дихотомическое) распределение ответов 2х2, приведенное в табл. 8.15.
Таблица 8.15
Взаимосвязь между ответами на два вопроса социологического
обследования



Если бы все, ответившие «да» на 1-й вопрос, отвечали бы «да» на 2-й вопрос, и так же совпадали ответы «нет», то связь была бы предельно тесной, функциональной. Но на самим деле распределение ответов на оба вопроса не совпадает. Большая часть ответивших «да» на 1-й вопрос ответила «да» и на 2-й вопрос, но часть ответила «нет». То же относится к ответившим «да» на 2-й вопрос. Связь есть, но неполная, типа корреляционной, и нужно измерить тесноту этой связи.
К. Пирсон предложил показатель, названный коэффициентом ассоциации. В числителе этого относительного показателя разность произведения чисел с одинаковыми ответами на оба вопроса: да-да и нет-нет и произведения чисел с неодинаковыми ответами: да-нет И нет-да. В знаменателе коэффициента ассоциации - корень квадратный из произведения всех четырех частных итогов. В буквенных обозначениях по табл. 8.13 имеем:

(8.48)



Свойства коэффициента ассоциации такие же, как и у коэффициента корреляции: коэффициент ассоциации обращается в нуль, если оба произведения в числителе точно уравновешиваются (что крайне маловероятно); он равен плюсединице, если отсутствуют оба гетерогенных сочетания Аb и Ba; равен минус единице, если отсутствуют гомогенные сочетания ответов Аа и Bb.
Другой метод измерения связи по «четырехклеточной таблице» предложен английскими статистиками Эдни Дж. Юлом (1871-1951) и Морисом Дж. Кендэлом (1907). Числитель этого коэффициента, называемого коэффициентам контингенции, совпадает с числителем коэффициента ассоциации Пирсона, а в знаменателе - сумма тех же произведений, разность которых стоит в числителе:


Как видим, коэффициент Юла-Кендэла значительно выше, чем коэффициент Пирсона. Крупный недостаток данного коэффициента в том, что уже при равенстве нулю только одного из двух гетерогенных сочетаний - либо Аb, либо Bа коэффициент Юла - Кендэла обращается в единицу. Можно сказать, что этот показатель очень либерально оценивает тесноту связи, завышает ее.
Наконец, вполне возможно предложить показатель тесноты связи в форме отношения избытка суммы гомогенных сочетаний над их пропорциональной суммой к предельно возможному избытку.
Для этого необходимо вначале вычислить, каковы были бы пропорциональные числа гомогенных сочетаний Аа и Bb? Пропорциональные числа - это доли от общей численности совокупности «N», которые были бы получены при полном отсутствии взаимосвязи группировок по двум признакам (ответам на два вопроса), т. е. числа (SA·Sa:N) и (SB·Sb:N), составляющие по данным табл. 8.13:
и

При отсутствии связи на первой диагонали таблицы в сумме было бы 100 + 450 = 550 единиц совокупности, а на самом деле их 170 + 520 = 690. Избыток, образовавшийся ввиду прямой связи между ответами, составил 690—550 = 140.
Предельно возможный избыток был бы в том случае, если бы не было гетерогенных сочетаний, т. е. Аb и Bа. Он составляет 140+80 + 230 = 450. Сам же показатель тесноты связи - отношение фактического излишка к предельному: 140 : 450 =0,311. Как видим, этот показатель близок к коэффициенту ассоциации, но обладает чрезвычайно логичной и ясной интерпретацией: связь составляет 0,311 или 31,1%, от предельно возможной функциональной. Этот показатель - аналог не коэффициента корреляции, а коэффициента детерминации. Поэтому правомерно обозначить его как R2 или з2 . Он имеет вид:

, (8.49)

где


Подставляя эти выражения в (8.49), получим:

(8.50)* [* Эта мера связи предложена М. Юзбашевым в 1986 г. в статье «О новом показателе тесноты связи описательных признаков» // Вестник статистики. - 1986. - № 3. - С. 65 - 66.]


При наличии не двух, а более возможных значений каждого из взаимосвязанных признаков также разработаны разные методы измерения тесноты связи.
Рассмотрим некоторые из этих мер на примере изучения влияния религиозной принадлежности на формирование супружеских пар. Воспользуемся данными ФРГ, где такой учет ведется постоянно. Статистический ежегодник Федеративной Республики Германии приводит распределение живорожденных младенцев по религиозной принадлежности отца и матери. При этом выделены 5 групп по религиозной принадлежности граждан: евангелическая (в России их чаще именуют протестантами); 2) римско-католическая; 3) прочие христиане (включая и православных); 4) других религий; 5) неверующие или не указавшие религиозную принадлежность (табл. 8.16).




Таблица 8.16
Распределение новорожденных в ФРГ по религиозной
принадлежности отца и матери в 1993 г.
(тыс. чел.)



В табл. 8.16 представлена «решетка» 5 ґ 5, и все ее клетки не пусты: встречаются детные браки между лицами любых вероисповеданий. Но при этом наибольшие числа располагаются вдоль «главной диагонали», т. е. явно преобладают случаи, когда и отец и мать


Таблица 8.17
Предельные значения коэффициента Пирсона




По данным табл. 8.16 имеем:

146,1+195,9+10,5+62,8+77,7=493,0 .



Таким образом, за счет предпочтения браков между лицами одинаковых религий на главную диагональ «собралось» 60,85% возможных родительских пар сверх равномерного распределения: связь составила 60,85% предельно тесной. Итак, все способы измерения показали, что влияние религии на формирование супружеских пар в ФРГ в 1993 году было значительное.
Если кроме количественных факторов при многофакторном регрессионном анализе включается и неколичественный, то применяют следующую методику: наличие неколичественного фактора у единиц совокупности обозначают единицей, его отсутствие -нулем. Если таких факторов, или градаций неколичественного фактора несколько, в уравнение регрессии вводятся несколько так называемых «фиктивных переменных», принимающих значения либо единицы, либо нуля. Например, пусть имеется три количественных фактора урожайности (x1, x2, x3) и три природных зоны. В ЭВМ вводятся переменные в порядке их принадлежности к той или иной зоне (табл. 8.18).
Линейное уравнение регрессии будет иметь вид:
y? = a +b1x1 + b2x2 + b3x3 + b4u1 + b5u2 (8.57)

Величина коэффициента b4 означает, что все единицы II зоны при тех же значениях количественных факторов, как и единицы I зоны, будут в среднем иметь значение у? на b4 больше (или меньше, если b4 < 0), чем единицы совокупности I зоны. Величина b5 озна-





Таблица 8.18



Рекомендуемая литература к главе 8

1. Антон Г. Анализ таблиц сопряженности / Пер. с англ. - М.: Финансы и статистика, 1982.
2. Елисеева И. И. Статистические методы измерения связей. -Л.: Изд-во Ленинградского ун-та, 1982.
3. Елисеева И. И., Рукавишников В. О. Логика прикладного статистического анализа. - М.: Финансы и статистика, 1982.
4. Крастинь О. П. Разработка и интерпретация моделей корреляционных связей в экономике. - Рига: Занатне, 1983.
5. Кулаичев А. П. Методы и средства анализа данных в среде Windows. Stadia 6.0 - М.: НПО Информатика и компьютеры, 1996.
6. Статистическое моделирование и прогнозирование: Учебное пособие / Под ред. А. Г. Гранберга. - М.: Финансы и статистика, 1990.
7. Ферстер Э., Речи Б. Методы корреляционного и регрессионного анализа. Руководство для экономистов / Пер. с нем. - М.: Финансы и статистика, 1983.
8. Шураков В. В. и др. Автоматизированное рабочее место для статистической обработки данных. - М.: Финансы и статистика, 1990.
Глава 9
СТАТИСТИЧЕСКОЕ ИЗУЧЕНИЕ ДИНАМИКИ

Одно из основных положений научной методологии - необходимость изучать все явления в развитии, во времени. Это относится и к статистике: она должна дать характеристику изменений статистических показателей во времени. Как изменяются год за годом валовой национальный продукт и национальный доход страны? Как возрастает или снижается уровень оплаты труда? Велики ли колебания урожайности зерновых культур и существует ли тенденция ее роста? На все аналогичные вопросы ответ может дать только специальная система статистических методов, предназначенная для изучения развития, изменений во времени или, как принято в статистике говорить, изучения динамики.

9.1. Составляющие элементы динамики:
основная тенденция и колебания

Рассмотрим данные табл. 9.1. Условимся, что относящиеся к отдельным годам значения урожайности картофеля, будем называть уровнями, а всю их последовательность с 1986 по 1996 г. -рядом динамики (динамическим рядом, временным рядом, английский термин «Time series»).
Таблица 9.1
Динамика урожайности картофеля в хозяйстве


Ряд динамики состоит из двух строк или столбцов: промежутков или моментов времени, к которым относятся уровни, и самих уровней признака (показателя). Ряд, в котором время задано в виде промежутков - лет, месяцев, суток, называется интервальным динамическим рядом. В табл. 9.1 приведен такой ряд. Ряд, в котором время задано в виде конкретных дат (моментов времени), называется моментным динамическим рядом. Например, ряд численности населения по оценке на 1 января каждого года.
Вернемся к табл. 9.1. Сравнивая уровни разных лет, мы замечаем, что в целом урожайность возрастает. Однако нередко уровень урожайности следующего года оказывается ниже предыдущего. Иногда рост по сравнению с предыдущим годом велик, как в 1990 г., а иногда мал. Следовательно, рост урожайности наблюдается лишь в среднем, как тенденция. В отдельные же годы уровни испытывают колебания, отклоняясь от основной тенденции. Эти колебания урожайности связаны в основном с различием метеорологических . условий в разные годы.
Если рассматривать динамические ряды месячных уровней производства мяса или молока, ряды объема продажи разных видов одежды и обуви, ряды заболеваемости населения, выявятся регулярно повторяющиеся из года в год сезонные колебания уровней. В силу солнечно-земных связей частота полярных сияний, интенсивность гроз, те же изменения урожайности отдельных сельхозкуль-тур и ряд других процессов имеют циклическую 10 - 11- летнюю колеблемость. Колебания числа рождений, связанные с потерями в войне, повторяются с угасающей амплитудой через поколение, т.е. через 20 - 25 лет.
Тенденция динамики связана с действием долговременно существующих причин и условий развития, хотя, конечно, после какого-то периода эти причины и условия тоже могут измениться и породить уже другую тенденцию развития изучаемого объекта. Колебания же, напротив, связаны с действием краткосрочных или циклических факторов, влияющих на отдельные уровни динамического ряда, и отклоняющих уровни от тенденции то в одном, то в другом направлении. Например, тенденция динамики урожайности связана с прогрессом агротехники, с укреплением экономики данной совокупности хозяйств, совершенствованием организации производства. Колеблемость урожайности вызвана чередованием благоприятных по погоде и неблагоприятных лет, циклами солнечной активности, колебаниями в развитии вредных насекомых и болезней растений.
При статистическом изучении динамики необходимо четко разделить ее два основных элемента - тенденцию и колеблемость чтобы дйть каждому из них количественную характеристику с по^ мощыо специальных показателей. Смешение тенденции и колеблемости ведет к неверным выводам о динамике. Если из табл. 9.1 произвольно взять данные за отдельные годы и сравнить их друг с другом, можно получить «выводы», прямо противоположные истине. Например, если сравнить урожайность в 1995 г. с урожайностью в 1987 г., то получим, что за 8 лет она возросла на 66 ц с 1 га, т.е. более чем по 8 ц с 1 га за год. Если же урожайность в 1996 г. сравнить с ее уровнем в 1988 г., то получим, что за 8 лет, из которых 7 лет те же, что и в предыдущем сравнении, урожайность возросла всего лишь на 2 ц с1 га.

Тенденцию и колебания наглядно показывает график (рис. 9.1). По оси абсцисс всегда отражается время, по оси ординат - уровни. По обеим осям строго соблюдается масштаб, иначе характер динамики будет искажен.
На рис 9.1 хорошо заметно, что рост урожайности в 1986 - 1996 гг. характеризовался линейной тенденцией, а колеблемость была хаотической, без явной цикличности. О линии тренда и ее уравнении будет сказано далее, в п. 9.5 и 9.6.

9.2. Показатели, характеризующие тенденцию
динамики

Чтобы построить систему показателей, характеризующих тенденцию динамики, нужно ответить на вопрос: какие черты, свойства этой тенденции нужно измерить и выразить в статистических показателях? Очевидно, нас интересует величина изменений уровня как в абсолютном, так и в относительном выражении (на какую долю, процент уровня, принятого за базу, произошло изменение?). Далее нас интересует: является ли изменение равномерным или неравномерным, ускоренным (замедленным?). Наконец, нас интересует выражение тенденции в форме некоторого достаточно простого уравнения, наилучшим образом аппроксимирующего фактическую тенденцию динамики. Понятие об уравнении тенденции динамики было введено в статистику английским ученым Гукером в 1902 г. Он предложил называть такое уравнение трендом (the trend).
Для того чтобы нагляднее представить показатели, характеризующие тенденцию, следует абстрагироваться от колеблемости и выявить динамический ряд в форме «чистого» тренда при отсутствии колебаний. Пример такого ряда представлен в табл. 9.2.
Таблица 9.2
Абсолютные и относительные показатели тенденции

Абсолютное изменение уровней - в данном случае его можно назвать абсолютным приростом - это разность между сравниваемым уровнем и уровнем более раннего периода, принятым за базу сравнения. Если эта база непосредственно предыдущий уровень, показатель называют цепным, если за базу взят, например, начальный уровень, показатель называют базисным. Формулы абсолютного изменения уровня:


Если абсолютное изменение отрицательно, его следует называть абсолютным сокращением. Абсолютное изменение имеет ту же единицу измерения, что и уровни ряда с добавлением единицы времени, за которую определено изменение: 22 тысячи тонн в год (или 1,83 тыс. т в месяц, или 110 тыс. т в пятилетие). Без указания единицы времени, за которую произошло измерение, абсолютный прирост нельзя правильно интерпретировать.
В табл. 9.2 абсолютное изменение уровня не является константой тенденции. Оно со временем возрастает, т.е. уровни ряда изменяются с ускорением. Ускорение - это разность между абсолютным изменением за данный период и абсолютным изменением за предыдущий период одинаковой длительности:



Показатель абсолютного ускорения применяется только в цепном варианте, но не в базисном. Отрицательная величина ускорения говорит о замедлении роста или об ускорении снижения уровней ряда.
Как видно по данным табл. 9.2, ускорение является константой тенденции данного ряда, что свидетельствует о параболической форме этой тенденции. Ее уравнение имеет вид:

Показатель ускорения абсолютного изменения уровней выражается в единицах измерения уровня, деленных на квадрат длины периода. В нашем случае ускорение составило 4 тыс. т в год за год или 4 тыс. т год-2. Смысл показателя следующий: объем производства (или добычи угля, руды) имел абсолютный прирост, возрастающий на 4 тыс. т в год ежегодно.
Усвоить рассмотренные показатели поможет следующая аналогия с механическим движением: уровень - это аналог пройденного пути, причем начало его отсчета не в нулевой точке. Абсолютный прирост - аналог скорости движения тела, а ускорение абсолютного прироста - аналог ускорения движения. Пройденный путь, считая и тот, который уже был пройден до начала отсчета времени в данной задаче, равен:



Сравнивая с формулой (9.3), видим, что s0 - аналог свободного члена a, v0 - аналог абсолютного изменения в; a/2 — аналог ускорения прироста С.
Как показано в гл. 3, система показателей должна содержать не только абсолютные, но и относительные статистические показатели.
Относительные показатели динамики необходимы для сравнения развития разных объектов, особенно если их абсолютные характеристики различны. Предположим, другое предприятие увеличивало производство аналогичной продукции с тенденцией, выраженной уравнением тренда: уi = 20 + 4t + 0,5t2i. И абсолютный прирост, и ускорение роста объема продукции во втором предприятии гораздо меньше, чем в первом. Но можно ли ограничиться этими показателями и сделать вывод, что развитие второго предприятия более медленное, чем первого? Меньший уровень еще не есть меньший темп развития, и это покажет относительная характеристика тенденции динамики — темп роста.
Темп роста — это отношение сравниваемого уровня (более позднего) к уровню, принятому за базу сравнения (более раннему). Темп роста исчисляется в цепном варианте - к уровню предыдущего года и в базисном варианте — к одному и тому же, обычно начальному уровню (см. формулы (9.4). Он говорит о том, сколько процентов составляет сравниваемый уровень по отношению к уровню, принятому за базу, или во сколько раз сравниваемый уровень больше уровня, принятого за базу. При этом если уровни снижаются со временем, то сказать, что последующий уровень «больше в 0,33 раза», или составляет 33,3% базового уровня, это, разумеется, означает, что уровень уменьшился в 3 раза. Но сказать что «уровень меньше в 0,33 раза», это неверно. Темп изменения в разах всегда говорит о том, во сколько раз сравниваемый уровень больше.
Теперь можно сказать, что относительная характеристика роста объема продукции на первом предприятии в среднем за год близка к 115% (рост приблизительно на 15% за год), и за шесть лет продукция увеличилась в 2,32 раза, а на втором предприятии, вычислив также шесть уровней параболического тренда, читатель убедится, что в среднем за год объем продукции возрастал примерно на 20%, а за шесть лет объем ее возрос в 3,1 раза. Следовательно, в относительном выражении объем продукции на втором предприятии развивался, возрастал быстрее. Только в сочетании абсолютных и относительных характеристик динамики можно правильно отразить процесс развития совокупности (объекта).

или же темпом прироста. Он равен к-\ или к-100%. Темп прироста (относительное изменение) может иметь как положительные значения, так и отрицательные. Наоборот, темп изменения -величина всегда положительная. Если уровень ряда динамики принимает положительные и отрицательные значения, например финансовый результат от реализации продукции предприятием может быть прибылью (+), а может быть убытком (-), тогда темп изменения и темп прироста применять нельзя. В этом случае такие показатели теряют смысл и не имеют экономической интерпретации. Сохраняют смысл только абсолютные показатели динамики.
Рассмотрим соотношения между цепными и базисными показателями на примере данных табл. 9.2:
1) сумма цепных абсолютных изменений равна базисному абсолютному изменению
SDi(цепн) = Di(баз). (9.6)
По данным табл. 9.2 получим:
12 + 16 + 20 + 24 + 28 + 32 = 232 - 100 = 132;
2) произведение цепных темпов изменения равно базисному темпу изменения


По данным табл. 9.2 получим:
1,12·1,143·1,156·1,162·1,163·1,16 = 2,32.
Сумма цепных темпов прироста не равна базисному темпу прироста.
12 + 13,3 + 15,6 + 16,2 + 16,3 + 16 ? 132 (в процентах).
Значения цепных темпов прироста, рассчитанных каждый к своей базе, различаются не только числом процентов, но и величиной абсолютного изменения, составляющей каждый процент. Поэтому складывать или вычитать цепные темпы прироста нельзя. Абсолютное значение 1% прироста равно сотой части предыдущего уровня, или базисного уровня.

9.3. Особенности показателей динамики для
рядов, состоящих их относительных уровней

Уровнями динамического ряда могут быть не только абсолютные показатели. Ряды динамики могут отражать развитие структуры совокупности, изменение со временем вариации признака в совокупности, взаимосвязи между признаками, соотношения значений признака для разных объектов. В этих случаях уровни динамического ряда сами являются относительными показателями, нередко выражаются в процентах. Следовательно, абсолютные изменения (и ускорения) тоже окажутся относительными величинами, могут быть выражены в процентах. В процентах, разумеется, будут выражены темпы изменения и относительные приросты. Все это создает нередко путаницу в интерпретации и использовании показателей динамики в печати и даже в специальной экономической литературе.
Рассмотрим пример. В США с конца XIX в. для группы ведущих акционерных компаний исчисляется так называемый индекс Доу Джонса - арифметическая средняя величина котировок акций на фондовых биржах. Этот показатель характеризует хозяйственную конъюнктуру: если индекс Доу Джонса повышается, т.е. растет относительная цена акций, значит, вкладчики капитала рассчитывают получить по акциям больший дивиденд (распределяемая часть прибыли). Это говорит о росте деловой активности. Падение индекса Доу Джонса говорит о снижении деловой активности в стране. Величина этого показателя есть отношение в процентах цены акций на бирже к их номиналу (первоначальной цене при выпуске акций). Это отношение зависит не только от колебаний деловой активности, но имеет также общую тенденцию роста ввиду инфляции - падения покупательной силы доллара США. С начала века этот рост значителен, поэтому в наше время индекс Доу Джонса составляет более 2000% (акция, когда-то выпущенная на сумму 100 долл., теперь стоит более 2000 современных долларов).
Биржевые новости за 5.05.1990 г. сообщают: индекс Доу Джонса на 3.05.1990 г. составил 2689,64% в сравнении с 2759,55% на 29.04.1990 т. Если вычислить показатель абсолютного изменения индекса, т.е. 2689,64% - 2759,55% =- 69,91%, и сказать, что индекс Доу Джонса за неделю понизился почти на 70%, создается ложное впечатление о чудовищном крахе на биржах США, потому что снижение на 70% воспринимается как темп изменения - будто от прежней цены акций осталось только 30%.
На самом деле снижение показателей с 2760 до 2690% никакой катастрофой экономике США не грозит: это обычная на рынке ценных бумаг колеблемость курсов. «Биржевые ведомости» далее сообщали, что индекс Доу Джонса на 7.06.1990 г. достиг 2911,6%, т.е. с 5.05.1990 г. возрос на 222 единицы, которые во избежании путаницы принято именовать «пунктами». В первом рассмотренном случае индекс снизился на 70 пунктов, во втором - возрос на 222 пункта, а не процента. В процентах рост составил: 222 : 2690 = 8,25% - это и есть темп прироста курса акций.
Аналогичные термины должны, применяться и к динамике показателей структуры. Например, общее производство электроэнергии в Российской Федерации в 1980 г. составляло 805 млрд кВ-ч, в том числе на атомных электростанциях 54 млрд кВт-ч, т. е. их доля была равна 6,7%. В 1995 г. общее производство электроэнергии составило 860 млрд кВт-ч, в том числе на АЭС 99,5 млрд кВт-ч, или 11,6%. Доля АЭС возросла, за 15 лет на 11,6- 6,7 = 4,9 пункта. А темп роста доли АЭС составил 11,6% : 6,7% = 1,73. Доля АЭС возросла на 73%.
Показатели динамики долей имеют еще одну особенность, вытекающую из того, что сумма всех долей в любой период времени равна единице, или 100%. Изменение, произошедшее с одной из долей, поэтому, неизбежно меняет и доли всех других частей целого, если даже по абсолютной величине эти части не изменились. Казалось бы, это положение самоочевидно, однако нередко в печати встречаются рассуждения о том, что увеличение доли пшеницы и ячменя среди зерновых культур - это хорошо, но вот плохо, что уменьшились доли ржи, овса и гречихи. Как будто все доли сразу могут увеличиться!
Если признак варьирует альтернативно, то увеличение доли одной группы равно уменьшению доли другой группы в пунктах, но темпы изменения долей в процентах при этом могут сильно различаться. Темп больше у той доли, которая в базисном периоде была меньше - темп прироста (изменения) понимается по абсолютной величине, по модулю. Например, в 1992 г. оплата труда составила 69,9% всех денежных доходов населения России, а прочие доходы 30,1%. В 1995 г. оплата труда составила только 39,3% всех денежных доходов населения, а доля прочих доходов возросла до 60,7%. Темп прироста доли прочих доходов составил 201,7%, т. е. их доля возросла на 101,7%. Доля же оплаты труда сократилась в относительном выражении на 43,8% [9 Россия в цифрах. 1996: Статистический сборник / Госкомстат России. -М.: Финансы и статистика, 1996. - С. 53.]
.
В общем виде темп роста одной из альтернативных долей зависит от темпа роста другой доли и величины этой доли следующим образом:


Абсолютное изменение долей в пунктах зависит от величины доли и темпа роста таким образом:

При наличии в совокупности не двух, а более групп абсолютное изменение каждой из долей в пунктах зависит от доли этой группы в базисный период и от соотношения темпа роста абсолютной величины объемного признака этой группы со средним темпом роста объемного признака во всей совокупности. Доля f-й группы в сравниваемый (текущий) период определяется как


Рассмотрим распределение занятого населения России по секторам экономики и его изменение (табл. 9.3).
Таблица 9.3
Занятое население России по секторам экономики в организациях
по формам собственности1

Организации с формой собственности
Доля в 1992 г., %
Темп изменения численности в 1995 г. к 1992 году, %
Государственная и муниципальная
68,9
50,7
Частная
18,3
184,8
Общественная
0,8
83,3
Совместная и смешанная
12,0
198,8
Всего занятых
100,0
93,3
1 Источник: Россия в цифрах. 199 6: Статистический сборник. Госкомстат России - М.: Финансы и статистика, 1996. - С. 34.



Согласно формуле (9.10) доля работающих в организациях с государственной и муниципальной формами собственности в 1995 г. составит:

или 37,45%.
Доля работающих в частном секторе: или 36,26%.
Доля работающих в общественных организациях: или 0,7%.
Доля работающих в совместных и предприятиях смешанной формы собственности: или 25,58%.

Знаменатели обеих дробей - 0,9327 - это средний (общий) темп изменения численности всех занятых.
Особенностью показателей динамики относительных величин интенсивности является то, что темпы роста и темпы прироста (или сокращения) прямого и обратного показателей не совпадают.
Пример. Трудоемкость производственной операции на старом станке составляла 10 мин., а производительность труда - 48 операций за смену. После замены станка на новый трудоемкость операции снизилась в 5 раз (до 2 мин.), а производительность возросла в те же 5 раз - до 240 операций за смену. Относительное изменение трудоемкости составило (2 - 10) : 10 = -0,8, т. е. трудоемкость снизилась на 80%. Относительное изменение производительности труда составило (240 - 48) : 48 = 4 или 400%, т. е. производительность труда возросла на 400%. Причина состоит в том, что пределом, к которому стремятся по мере прогресса показатели ресурсо-отдачи, является бесконечность, а пределом, к которому стремятся обратные им показатели ресурсоемкости, является нуль. Понимание разного поведения показателей динамики прямых и обратных мер эффективности очень важно для экономиста и статистика.
По мере приближения относительного показателя к пределу одно и то же абсолютное изменение в пунктах приобретает иное качественное содержание. Например, если показатель тесноты связи -коэффициент детерминации - возрос с 40 до 65% (на 25 пунктов), то система факторов в регрессионном уравнении как была, так и осталась неполной, хорошей модели не получено. Но если после изменения состава факторов коэффициент детерминации возрос с 65 до 90% - на те же 25 пунктов, это изменение имеет другое качественное содержание: получена хорошая регрессионная модель, в основном объясняющая вариацию результативного признака с достаточно полной системой факторов.

9.4. Средние показатели тенденции динамики

Средние показатели динамики - средний уровень ряда, средние абсолютные изменения и ускорения, средние темпы роста - характеризуют тенденцию. Они необходимы при обобщении характеристик тенденции за длительный период, по различным периодам и незаменимы при сравнении развития за неодинаковые по длительности отрезки времени, при выборе аналитического выражения тренда. При наличии в динамическом ряду существенных колебаний уровней определение средних показателей тенденции требует применения специальных методов статистики, которые излагаются в последующих разделах. В данном разделе рассматривается только форма, математические свойства средних показателей динамики и простейшие приемы их вычисления, применимые на практике к рядам со слабой колеблемостью.
Средний уровень интервального ряда динамики определяется как простая арифметическая средняя из уровней за равные промежутки времени:

или как взвешенная арифметическая средняя из уровней за неравные промежутки времени, длительность которых и является весами. -
По данным табл. 9.1 определим среднегодовые уровни урожайности картофеля по пяти-шестилетиям:



Средние уровни принято условно относить к середине интервала времени, т. е. для пятилетия 1986—1990 гг. - к 1988 г., для шестилетия 1991-1996 - к середине между 1993 и 1994 гг., т. е. к 1993,5.
Если, например, с 1-го числа месяца по 18-е число на предприятии работали 45 человек, с 19-го по 27-е - 48 человек, а с 28-го по 31 -е число - 54 человека, то среднее списочное число работников за месяц составит:


<< Пред. стр.

страница 17
(всего 32)

ОГЛАВЛЕНИЕ

След. стр. >>

Copyright © Design by: Sunlight webdesign